Literatura científica selecionada sobre o tema "Cascade"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cascade".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cascade"
Yamamoto, A., R. Murao, Y. Suzuki e Y. Aoi. "A Quasi-Unsteady Study on Wake Interaction of Turbine Stator and Rotor Cascades". Journal of Turbomachinery 117, n.º 4 (1 de outubro de 1995): 553–61. http://dx.doi.org/10.1115/1.2836567.
Texto completo da fonteLee, Yoo Seok, Koun Lim e Shelley D. Minteer. "Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances". Annual Review of Physical Chemistry 72, n.º 1 (20 de abril de 2021): 467–88. http://dx.doi.org/10.1146/annurev-physchem-090519-050109.
Texto completo da fonteLittmann, Enno, e Helge Ritter. "Learning and Generalization in Cascade Network Architectures". Neural Computation 8, n.º 7 (outubro de 1996): 1521–39. http://dx.doi.org/10.1162/neco.1996.8.7.1521.
Texto completo da fonteSuzuki, Daiki, Sho Tsugawa, Keiichiro Tsukamoto e Shintaro Igari. "On the effectiveness of a contrastive cascade graph learning framework: The power of synthetic cascade data". PLOS ONE 18, n.º 10 (16 de outubro de 2023): e0293032. http://dx.doi.org/10.1371/journal.pone.0293032.
Texto completo da fonteZhang, Shuyi, Bo Yang, Hong Xie e Moru Song. "Applications of an Improved Aerodynamic Optimization Method on a Low Reynolds Number Cascade". Processes 8, n.º 9 (14 de setembro de 2020): 1150. http://dx.doi.org/10.3390/pr8091150.
Texto completo da fonteAzizov, T. E., A. Yu Smirnov e G. A. Sulaberidze. "Comparison of the efficiency of square cascades with an additional product flow and double cascades to concentrate intermediate isotopes". Journal of Physics: Conference Series 2147, n.º 1 (1 de janeiro de 2022): 012006. http://dx.doi.org/10.1088/1742-6596/2147/1/012006.
Texto completo da fonteLipp, Vladimir, Igor Milov e Nikita Medvedev. "Quantifying electron cascade size in various irradiated materials for free-electron laser applications". Journal of Synchrotron Radiation 29, n.º 2 (15 de fevereiro de 2022): 323–30. http://dx.doi.org/10.1107/s1600577522000339.
Texto completo da fonteYocum, A. M., e W. F. O’Brien. "Separated Flow in a Low-Speed Two-Dimensional Cascade: Part II—Cascade Performance". Journal of Turbomachinery 115, n.º 3 (1 de julho de 1993): 421–34. http://dx.doi.org/10.1115/1.2929269.
Texto completo da fonteAmour, A., M. Bird, L. Chaudry, J. Deadman, D. Hayes e C. Kay. "General considerations for proteolytic cascades". Biochemical Society Transactions 32, n.º 1 (1 de fevereiro de 2004): 15–16. http://dx.doi.org/10.1042/bst0320015.
Texto completo da fonteMilner, Jo. "Molecular cascades in the Cascade Mountains". Trends in Genetics 12, n.º 9 (setembro de 1996): 372–73. http://dx.doi.org/10.1016/s0168-9525(96)80023-0.
Texto completo da fonteTeses / dissertações sobre o assunto "Cascade"
Taboada, Martín O. "Automated target cascade". [S.l.] : [s.n.], 2006. http://opus.kobv.de/tuberlin/volltexte/2006/1435.
Texto completo da fontePatterson, Steven Gregory. "Bipolar cascade lasers". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8805.
Texto completo da fonteIncludes bibliographical references.
This thesis addresses issues of the design and modeling of the Bipolar Cascade Laser (BCL), a new type of quantum well laser. BCLs consist of multiple single stage lasers electrically coupled via tunnel junctions. The BCL ideally operates by having each injected electron participate in a recombination event in the topmost active region, then tunnel from the valence band of the first active region into the conduction band of the next active region, participate in another recombination event, and so on through each stage of the cascade. As each electron may produce more than one photon the quantum efficiency of the device can, in theory, exceed 100%. This work resulted in the first room temperature, continuous-wave operation of a BCL, with a record 99.3% differential slope efficiency. The device was fully characterized and modeled to include light output and voltage versus current bias, modulation response and thermal properties. A new singlemode bipolar cascade laser, the bipolar cascade antiresonant reflecting optical waveguide laser, was proposed and modeled.
by Steven G. Patterson.
Ph.D.
Baumann, Morgaine Lillian. "Cascade & Run". PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/5121.
Texto completo da fonteYamazaki, Yasuhiro H. "The cyclogenetic energy cascade". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ49977.pdf.
Texto completo da fonteHanson, Timothy B. "Cascade adaptive array structures". Ohio : Ohio University, 1990. http://www.ohiolink.edu/etd/view.cgi?ohiou1173207031.
Texto completo da fonteMain, A. D. J. "Annular turbine cascade aerodynamics". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239350.
Texto completo da fonteWinning, Leonard H. "New Radical Cascade Chemistry". Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494312.
Texto completo da fonteWilliams, Benjamin S. (Benjamin Stanford) 1974. "Terahertz quantum cascade lasers". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17012.
Texto completo da fonteIncludes bibliographical references (p. 297-310).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The development of the terahertz frequency range has long been impeded by the relative dearth of compact, coherent radiation sources of reasonable power. This thesis details the development of quantum cascade lasers (QCLs) that operate in the terahertz with photon energies below the semiconductor Reststrahlen band. Photons are emitted via electronic intersubband transitions that take place entirely within the conduction band, where the wavelength is chosen by engineering the well and barrier widths in multiple-quantum-well heterostructures. Fabrication of such long wavelength lasers has traditionally been challenging, since it is difficult to obtain a population inversion between such closely spaced energy levels, and because traditional dielectric waveguides become extremely lossy due to free carrier absorption. This thesis reports the development of terahertz QCLs in which the lower radiative state is depopulated via resonant longitudinal-optical phonon scattering. This mechanism is efficient and temperature insensitive, and provides protection from thermal backfilling due to the large energy separation between the lower radiative state and the injector. Both properties are important in allowing higher temperature operation at longer wavelengths. Lasers using a surface plasmon based waveguide grown on a semi-insulating (SI) GaAs substrate were demonstrated at 3.4 THz in pulsed mode up to 87 K, with peak collected powers of 14 mW at 5 K, and 4 mW at 77 K.
Additionally, the first terahertz QCLs have been demonstrated that use metalmetal waveguides, where the mode is confined between metal layers placed immediately above and below the active region. These devices have confinement factors close to unity, and are expected to be advantageous over SI-surface-plasmon waveguides, especially at long wavelengths. Such a waveguide was used to obtain lasing at 3.8 THz in pulsed mode up to a record high temperature of 137 K, whereas similar devices fabricated in SI-surface-plasmon waveguides had lower maximum lasing temperatures due to the higher losses and lower confinement factors. This thesis describes the theory, design, fabrication, and testing of terahertz quantum cascade laser devices. A summary of theory relevant to design is presented, including intersubband radiative transitions and gain, intersubband scattering, and coherent resonant tunneling transport using a tight-binding density matrix model. Analysis of the effects of the complex heterostructure phonon spectra on terahertz QCL design are considered. Calculations of the properties of various terahertz waveguides are presented and compared with experimental results. Various fabrication methods have been developed, including a robust metallic wafer bonding technique used to fabricate metal-metal waveguides. A wide variety of quantum cascade structures, both lasing and non-lasing, have been experimentally characterized, which yield valuable information about the transport and optical properties of terahertz devices. Finally, prospects for higher temperature operation of terahertz QCLs are considered.
by Benjamin S. Williams.
Ph.D.
Pack, Camille Marian. "Cascade Lake: A Novel". DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/365.
Texto completo da fonteMizuta, Atsushi. "Universality of Kolmogorov's Cascade Picture in Inverse Energy Cascade Range of Two-dimensional turbulence". 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189339.
Texto completo da fonteLivros sobre o assunto "Cascade"
Cascade. New York: Viking, 2012.
Encontre o texto completo da fonteCascade! [Place of publication not identified]: [publisher not identified], 2013.
Encontre o texto completo da fonteRiva, Sergio, e Wolf-Dieter Fessner, eds. Cascade Biocatalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682492.
Texto completo da fonteDeVivo, Anita. Cascade Park. Charleston, SC: Arcadia Pub., 2010.
Encontre o texto completo da fonteWykes, Marjorie Mallory. Cascade chronicles. Grand Rapids, Mich: Cascade Historical Commission, 1987.
Encontre o texto completo da fonteGambler's Cascade. London, UK: Hale, 1986.
Encontre o texto completo da fonteCascade Effect. Red Deer: Dragon Moon Press, 2013.
Encontre o texto completo da fonteGitin, Eugene L. Fool's cascade. New York: Vantage Press, 1995.
Encontre o texto completo da fonteLawrence County Historical Society (New Castle, Pa.), ed. Cascade Park. Charleston, S.C: Arcadia Pub., 2010.
Encontre o texto completo da fonteWolves in the Throne Room (Musical group). Black cascade. Los Angeles, CA: Southern Lord, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cascade"
Borrione, Dominique. "CASCADE". In Fundamentals and Standards in Hardware Description Languages, 411–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1914-6_14.
Texto completo da fonteWang, Wei, e Clark Barrett. "Cascade". In Tools and Algorithms for the Construction and Analysis of Systems, 420–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46681-0_33.
Texto completo da fonteHubbard, John H., e Beverly H. West. "Cascade". In MacMath 9.2, 81–86. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8378-9_12.
Texto completo da fonteDavis, Loren. "Cascade". In Encyclopedia of Prehistory, 27–29. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0523-5_4.
Texto completo da fonteHubbard, John H., e Beverly H. West. "Cascade". In MacMath 9.0, 81–86. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4684-0390-9_12.
Texto completo da fonteHubbard, John H., e Beverly H. West. "Cascade". In MacMath 9.2, 81–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-25368-7_12.
Texto completo da fonteGooch, Jan W. "Cascade". In Encyclopedic Dictionary of Polymers, 880. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13322.
Texto completo da fonteGarcia-Ruiz, Eva, Diana M. Mate, David Gonzalez-Perez, Patricia Molina-Espeja, Susana Camarero, Angel T. Martínez, Antonio O. Ballesteros e Miguel Alcalde. "Directed Evolution of Ligninolytic Oxidoreductases: from Functional Expression to Stabilization and Beyond". In Cascade Biocatalysis, 1–22. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682492.ch1.
Texto completo da fonteSantacoloma, Paloma A., e John M. Woodley. "Perspectives on Multienzyme Process Technology". In Cascade Biocatalysis, 231–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682492.ch10.
Texto completo da fonteMartínková, Ludmila, Andreas Stolz, Fred van Rantwijk, Nicola D'Antona, Dean Brady e Linda G. Otten. "Nitrile Converting Enzymes Involved in Natural and Synthetic Cascade Reactions". In Cascade Biocatalysis, 249–70. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682492.ch11.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cascade"
Zhang, Jingyuan Linda, Xue Huang, Claire F. Gmachl, Vadim Tokranov e Serge Oktyabrsky. "Cascaded-transition Quantum Cascade laser". In 2012 Lester Eastman Conference on High Performance Devices (LEC). IEEE, 2012. http://dx.doi.org/10.1109/lec.2012.6410996.
Texto completo da fonteLu, Xiaodong, Shuo Ji, Le Yu, Leilei Sun, Bowen Du e Tongyu Zhu. "Continuous-Time Graph Learning for Cascade Popularity Prediction". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/247.
Texto completo da fonteYocum, Adam M., e Walter F. O’Brien. "Separated Flow in a Low Speed Two-Dimensional Cascade: Part II — Cascade Performance". In ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-357.
Texto completo da fonteYamamoto, Atsumasa, Rin-ichi Murao, Yuji Suzuki e Yoshihiro Aoi. "A Quasi Unsteady Study on Wake Interaction of Turbine Stator and Rotor Cascades". In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-138.
Texto completo da fonteBelz, Joachim, Holger Hennings e Gerhard Kahl. "Experimental Investigation of the Forcing Function and Forced Pitching Blade Oscillations of an Annular Compressor Cascade in Transonic Flow". In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23590.
Texto completo da fonteChilton, Lydia B., Greg Little, Darren Edge, Daniel S. Weld e James A. Landay. "Cascade". In CHI '13: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2470654.2466265.
Texto completo da fonteCheng, Long Hin Porsche, e Yuet Ting Cheng. "Cascade". In SA '20: SIGGRAPH Asia 2020. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3414686.3427165.
Texto completo da fonteChou, Teyuh, Wei Tang, Jacob Botimer e Zhengya Zhang. "CASCADE". In MICRO '52: The 52nd Annual IEEE/ACM International Symposium on Microarchitecture. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3352460.3358328.
Texto completo da fonteMunoz Lopez, Edwin J., Alexander Hergt e Sebastian Grund. "The New Chapter of Transonic Compressor Cascade Design at the DLR". In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-80189.
Texto completo da fonteFranz, Kale J., Daniel Wasserman, Anthony J. Hoffman, Claire Gmachl, Kuen-Ting Shiu e Stephen R. Forrest. "Cascaded Emission from a Dual-Wavelength Quantum Cascade Laser". In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452957.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cascade"
Yang, Bo, Chris Binder e Pamela Blackmore. Cascade Garden. Landscape Architecture Foundation, 2013. http://dx.doi.org/10.31353/cs0650.
Texto completo da fontePassariello, Fausto. Bedside Oxygen Cascade. Fondazione Vasculab, dezembro de 2014. http://dx.doi.org/10.24019/2014.bedsideoxygencascade.
Texto completo da fontePassariello, Fausto. Bedside oxygen cascade. Fondazione Vasculab, dezembro de 2014. http://dx.doi.org/10.24019/2014.bo2c.
Texto completo da fonteGmachl, Claire. Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2005. http://dx.doi.org/10.21236/ada429769.
Texto completo da fonteMacklin, R. L. Maxwellian cascade model. Office of Scientific and Technical Information (OSTI), novembro de 1989. http://dx.doi.org/10.2172/5352123.
Texto completo da fonteBaumann, Morgaine. Cascade & Run. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.7000.
Texto completo da fonteCarr, S. B., I. R. Afnan e B. F. Gibson. The cascade-deuteron system. Office of Scientific and Technical Information (OSTI), maio de 1994. http://dx.doi.org/10.2172/10149656.
Texto completo da fonteYang, Rui Q., Michael B. Santos e Matthew B. Johnson. Interband Cascade Photovoltaic Cells. Office of Scientific and Technical Information (OSTI), setembro de 2014. http://dx.doi.org/10.2172/1157586.
Texto completo da fonteHartmann, S. R. Two-Photon Cooperative Cascade Superfluorescence. Fort Belvoir, VA: Defense Technical Information Center, junho de 1992. http://dx.doi.org/10.21236/ada254579.
Texto completo da fonteFolkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2009. http://dx.doi.org/10.21236/ada507657.
Texto completo da fonte