Artigos de revistas sobre o tema "Cartilage cells"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cartilage cells".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Åberg, Thomas, Ritva Rice, David Rice, Irma Thesleff e Janna Waltimo-Sirén. "Chondrogenic Potential of Mouse Calvarial Mesenchyme". Journal of Histochemistry & Cytochemistry 53, n.º 5 (maio de 2005): 653–63. http://dx.doi.org/10.1369/jhc.4a6518.2005.
Texto completo da fonteHolmbeck, Kenn, Paolo Bianco, Kali Chrysovergis, Susan Yamada e Henning Birkedal-Hansen. "MT1-MMP–dependent, apoptotic remodeling of unmineralized cartilage". Journal of Cell Biology 163, n.º 3 (10 de novembro de 2003): 661–71. http://dx.doi.org/10.1083/jcb.200307061.
Texto completo da fonteYi, Hee-Gyeong, Yeong-Jin Choi, Jin Woo Jung, Jinah Jang, Tae-Ha Song, Suhun Chae, Minjun Ahn, Tae Hyun Choi, Jong-Won Rhie e Dong-Woo Cho. "Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty". Journal of Tissue Engineering 10 (janeiro de 2019): 204173141882479. http://dx.doi.org/10.1177/2041731418824797.
Texto completo da fonteMazor, Marija, Annabelle Cesaro, Mazen Ali, Thomas M. Best, Eric Lespessailles e Hechmi Toumi. "Progenitor Cells From Cartilage". Medicine & Science in Sports & Exercise 49, n.º 5S (maio de 2017): 681. http://dx.doi.org/10.1249/01.mss.0000518798.14205.0d.
Texto completo da fonteBenjamin, M., C. W. Archer e J. R. Ralphs. "Cytoskeleton of cartilage cells". Microscopy Research and Technique 28, n.º 5 (1 de agosto de 1994): 372–77. http://dx.doi.org/10.1002/jemt.1070280503.
Texto completo da fonteSuchorska, Wiktoria Maria, Ewelina Augustyniak, Magdalena Richter, Magdalena Łukjanow, Violetta Filas, Jacek Kaczmarczyk e Tomasz Trzeciak. "Modified methods for efficiently differentiating human embryonic stem cells into chondrocyte-like cells". Postępy Higieny i Medycyny Doświadczalnej 71, n.º 1 (19 de junho de 2017): 0. http://dx.doi.org/10.5604/01.3001.0010.3831.
Texto completo da fonteLe, Hanxiang, Weiguo Xu, Xiuli Zhuang, Fei Chang, Yinan Wang e Jianxun Ding. "Mesenchymal stem cells for cartilage regeneration". Journal of Tissue Engineering 11 (janeiro de 2020): 204173142094383. http://dx.doi.org/10.1177/2041731420943839.
Texto completo da fonteZhang, Hong, Xiaopeng Zhao, Zhiguang Zhang, Weiwei Chen e Xinli Zhang. "An Immunohistochemistry Study of Sox9, Runx2, and Osterix Expression in the Mandibular Cartilages of Newborn Mouse". BioMed Research International 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/265380.
Texto completo da fonteHayes, Anthony J., John Whitelock e James Melrose. "Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis". International Journal of Molecular Sciences 23, n.º 4 (9 de fevereiro de 2022): 1934. http://dx.doi.org/10.3390/ijms23041934.
Texto completo da fonteSchilling, T. F., C. Walker e C. B. Kimmel. "The chinless mutation and neural crest cell interactions in zebrafish jaw development". Development 122, n.º 5 (1 de maio de 1996): 1417–26. http://dx.doi.org/10.1242/dev.122.5.1417.
Texto completo da fonteMackie, E. J., I. Thesleff e R. Chiquet-Ehrismann. "Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro." Journal of Cell Biology 105, n.º 6 (1 de dezembro de 1987): 2569–79. http://dx.doi.org/10.1083/jcb.105.6.2569.
Texto completo da fonteJian, Quan-Liang, Wei-Chun HuangFu, Yen-Hua Lee e I.-Hsuan Liu. "Age, but not short-term intensive swimming, affects chondrocyte turnover in zebrafish vertebral cartilage". PeerJ 6 (1 de outubro de 2018): e5739. http://dx.doi.org/10.7717/peerj.5739.
Texto completo da fonteKurenkova, Anastasiia D., Irina A. Romanova, Pavel D. Kibirskiy, Peter Timashev e Ekaterina V. Medvedeva. "Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells". International Journal of Molecular Sciences 23, n.º 19 (22 de setembro de 2022): 11169. http://dx.doi.org/10.3390/ijms231911169.
Texto completo da fonteKirasirova, E. A., N. V. Lafutkina, R. A. Rezakov, R. F. Mamedov e I. F. Al-Assaf. "PATHOMORPHOLOGICAL CHANGES IN THE CARTILAGE OF THE TRACHEA DEPENDING ON TERMS OF THE INTUBATION". Folia Otorhinolaryngologiae et Pathologiae Respiratoriae 25, n.º 3 (2019): 87–93. http://dx.doi.org/10.33848/foliorl23103825-2019-25-3-87-93.
Texto completo da fonteWang, Mingjie, Zhiguo Yuan, Ning Ma, Chunxiang Hao, Weimin Guo, Gengyi Zou, Yu Zhang et al. "Advances and Prospects in Stem Cells for Cartilage Regeneration". Stem Cells International 2017 (2017): 1–16. http://dx.doi.org/10.1155/2017/4130607.
Texto completo da fonteSoliman, Soha A., Basma Mohamed Kamal e Hanan H. Abd-Elhafeez. "Cellular Invasion and Matrix Degradation, a Different Type of Matrix-Degrading Cells in the Cartilage of Catfish (Clarias gariepinus) and Japanese Quail Embryos (Coturnix coturnix japonica)". Microscopy and Microanalysis 25, n.º 05 (outubro de 2019): 1283–92. http://dx.doi.org/10.1017/s1431927619014892.
Texto completo da fontePeng, Haining, Yi Zhang, Zhongkai Ren, Ziran Wei, Renjie Chen, Yingze Zhang, Xiaohong Huang e Tengbo Yu. "Cartilaginous Metabolomics Reveals the Biochemical-Niche Fate Control of Bone Marrow-Derived Stem Cells". Cells 11, n.º 19 (21 de setembro de 2022): 2951. http://dx.doi.org/10.3390/cells11192951.
Texto completo da fonteZhang, Jianying, Shiwu Dong, Wesley Sivak, Hui Bin Sun e Kai Tao. "Stem Cells in Cartilage Regeneration". Stem Cells International 2017 (2017): 1–2. http://dx.doi.org/10.1155/2017/7034726.
Texto completo da fonteKistler, Andreas, Brigitta Galli e Herbert Kuhn. "Retinoic acid-induced cartilage degradation is caused by cartilage cells". Roux's Archives of Developmental Biology 199, n.º 7 (julho de 1991): 377–86. http://dx.doi.org/10.1007/bf01705847.
Texto completo da fonteCHEN, JING, CHUNGEN GUO, HONGSHENG LI, XIAOQIN ZHU, SHUYUAN XIONG e JIANXIN CHEN. "NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS". Journal of Innovative Optical Health Sciences 06, n.º 03 (julho de 2013): 1350024. http://dx.doi.org/10.1142/s1793545813500247.
Texto completo da fonteLongo, Umile Giuseppe, Stefano Petrillo, Edoardo Franceschetti, Alessandra Berton, Nicola Maffulli e Vincenzo Denaro. "Stem Cells and Gene Therapy for Cartilage Repair". Stem Cells International 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/168385.
Texto completo da fonteRanger, Ann M., Louis C. Gerstenfeld, Jinxi Wang, Tamiyo Kon, Hyunsu Bae, Ellen M. Gravallese, Melvin J. Glimcher e Laurie H. Glimcher. "The Nuclear Factor of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is a Repressor of Chondrogenesis". Journal of Experimental Medicine 191, n.º 1 (3 de janeiro de 2000): 9–22. http://dx.doi.org/10.1084/jem.191.1.9.
Texto completo da fonteBae, Jung Yoon, Kazuaki Matsumura, Shigeyuki Wakitani, Amu Kawaguchi, Sadami Tsutsumi e Suong-Hyu Hyon. "Beneficial Storage Effects of Epigallocatechin-3-O-Gallate on the Articular Cartilage of Rabbit Osteochondral Allografts". Cell Transplantation 18, n.º 5-6 (maio de 2009): 505–12. http://dx.doi.org/10.1177/096368970901805-604.
Texto completo da fonteA Soliman, Soha. "MMP-9 Expression in Normal Rabbit Chondrocytes". Cytology & Histology International Journal 5, n.º 1 (2021): 1–9. http://dx.doi.org/10.23880/chij-16000131.
Texto completo da fonteSun, GW, H. Kobayashi, M. Suzuki, N. Kanayama e T. Terao. "Production of cartilage link protein by human granulosa-lutein cells". Journal of Endocrinology 175, n.º 2 (1 de novembro de 2002): 505–15. http://dx.doi.org/10.1677/joe.0.1750505.
Texto completo da fonteSen, Rwik, Sofia Pezoa, Lomeli Carpio Shull, Laura Hernandez-Lagunas, Lee Niswander e Kristin Artinger. "Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice". Journal of Developmental Biology 6, n.º 4 (12 de novembro de 2018): 27. http://dx.doi.org/10.3390/jdb6040027.
Texto completo da fonteSchilling, T. F., e C. B. Kimmel. "Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo". Development 124, n.º 15 (1 de agosto de 1997): 2945–60. http://dx.doi.org/10.1242/dev.124.15.2945.
Texto completo da fonteMcBurney, Kim M., e Glenda M. Wright. "Chondrogenesis of a non-collagen-based cartilage in the sea lamprey, Petromyzon marinus". Canadian Journal of Zoology 74, n.º 12 (1 de dezembro de 1996): 2118–30. http://dx.doi.org/10.1139/z96-241.
Texto completo da fonteRim, Yeri Alice, Yoojun Nam e Ji Hyeon Ju. "Application of Cord Blood and Cord Blood-Derived Induced Pluripotent Stem Cells for Cartilage Regeneration". Cell Transplantation 28, n.º 5 (25 de setembro de 2018): 529–37. http://dx.doi.org/10.1177/0963689718794864.
Texto completo da fonteKotaka, Shinji, Shigeyuki Wakitani, Akira Shimamoto, Naosuke Kamei, Mikiya Sawa, Nobuo Adachi e Mituo Ochi. "Magnetic Targeted Delivery of Induced Pluripotent Stem Cells Promotes Articular Cartilage Repair". Stem Cells International 2017 (26 de dezembro de 2017): 1–7. http://dx.doi.org/10.1155/2017/9514719.
Texto completo da fonteWang, L., M. Lazebnik e M. S. Detamore. "Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application". Osteoarthritis and Cartilage 17, n.º 3 (março de 2009): 346–53. http://dx.doi.org/10.1016/j.joca.2008.07.004.
Texto completo da fonteSchmitt, Andreas, Martijn van Griensven, Andreas B. Imhoff e Stefan Buchmann. "Application of Stem Cells in Orthopedics". Stem Cells International 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/394962.
Texto completo da fonteZheng, Min. "Stem Cells Promote the Regeneration of Knee Joint Degenerative Bone and Articular Cartilage". Journal of Healthcare Engineering 2022 (24 de março de 2022): 1–7. http://dx.doi.org/10.1155/2022/9533211.
Texto completo da fonteEnomura, Masahiro, Soichiro Murata, Yuri Terado, Maiko Tanaka, Shinji Kobayashi, Takayoshi Oba, Shintaro Kagimoto et al. "Development of a Method for Scaffold-Free Elastic Cartilage Creation". International Journal of Molecular Sciences 21, n.º 22 (11 de novembro de 2020): 8496. http://dx.doi.org/10.3390/ijms21228496.
Texto completo da fonteKaplan, David. "Role of cartilage-forming cells in regenerative medicine for cartilage repair". Orthopedic Research and Reviews Volume 2 (setembro de 2010): 85–94. http://dx.doi.org/10.2147/orr.s7194.
Texto completo da fonteMessaoudi, Océane, Christel Henrionnet, Kevin Bourge, Damien Loeuille, Pierre Gillet e Astrid Pinzano. "Stem Cells and Extrusion 3D Printing for Hyaline Cartilage Engineering". Cells 10, n.º 1 (22 de dezembro de 2020): 2. http://dx.doi.org/10.3390/cells10010002.
Texto completo da fonteWang, Ketao, Ji Li, Zhongli Li, Bin Wang, Yuanyuan Qin, Ning Zhang, Hao Zhang, Xiangzheng Su, Yuxing Wang e Heng Zhu. "Chondrogenic Progenitor Cells Exhibit Superiority Over Mesenchymal Stem Cells and Chondrocytes in Platelet-Rich Plasma Scaffold-Based Cartilage Regeneration". American Journal of Sports Medicine 47, n.º 9 (13 de junho de 2019): 2200–2215. http://dx.doi.org/10.1177/0363546519854219.
Texto completo da fonteChen, Yawen, Xinli Ouyang, Yide Wu, Shaojia Guo, Yongfang Xie e Guohui Wang. "Co-culture and Mechanical Stimulation on Mesenchymal Stem Cells and Chondrocytes for Cartilage Tissue Engineering". Current Stem Cell Research & Therapy 15, n.º 1 (19 de março de 2020): 54–60. http://dx.doi.org/10.2174/1574888x14666191029104249.
Texto completo da fonteJoe, Su Mee, In Seon Lee, Yong Tae Lee, Jun Hyuk Lee e Byung Tae Choi. "Suppression of Collagen-Induced Arthritis in Rats by Continuous Administration of Dae-Bang-Poong-Tang (Da-Fang-Feng-Tang)". American Journal of Chinese Medicine 29, n.º 02 (janeiro de 2001): 355–65. http://dx.doi.org/10.1142/s0192415x0100037x.
Texto completo da fonteLi, Lu, Yuehui Ma, Xianglong Li, Xiangchen Li, Chunyu Bai, Meng Ji, Shuang Zhang, Weijun Guan e Junjie Li. "Isolation, Culture, and Characterization of Chicken Cartilage Stem/Progenitor Cells". BioMed Research International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/586290.
Texto completo da fonteBuhrmann, Constanze, Ali Honarvar, Mohsen Setayeshmehr, Saeed Karbasi, Mehdi Shakibaei e Ali Valiani. "Herbal Remedies as Potential in Cartilage Tissue Engineering: An Overview of New Therapeutic Approaches and Strategies". Molecules 25, n.º 13 (6 de julho de 2020): 3075. http://dx.doi.org/10.3390/molecules25133075.
Texto completo da fonteShiraishi, Katsunori, Naosuke Kamei, Shunsuke Takeuchi, Shinobu Yanada, Hisashi Mera, Shigeyuki Wakitani, Nobuo Adachi e Mitsuo Ochi. "Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair". Stem Cells International 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/8740294.
Texto completo da fonteHe, Yuan-Jia, Shuang Lin e Qiang Ao. "Research Progress of Tissue-Engineered Cartilage in Repairing Cartilage Defects". Science of Advanced Materials 12, n.º 1 (1 de janeiro de 2020): 66–74. http://dx.doi.org/10.1166/sam.2020.3704.
Texto completo da fonteCui, Dixin, Hongyu Li, Xin Xu, Ling Ye, Xuedong Zhou, Liwei Zheng e Yachuan Zhou. "Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis". Stem Cells International 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/5979741.
Texto completo da fonteClark, Andrea L., Linda Mills, David A. Hart e Walter Herzog. "MUSCLE-INDUCED PATELLOFEMORAL JOINT LOADING RAPIDLY AFFECTS CARTILAGE mRNA LEVELS IN A SITE SPECIFIC MANNER". Journal of Musculoskeletal Research 08, n.º 01 (março de 2004): 1–12. http://dx.doi.org/10.1142/s0218957704001223.
Texto completo da fonteDeng, Zhantao, Jiewen Jin, Jianning Zhao e Haidong Xu. "Cartilage Defect Treatments: With or without Cells? Mesenchymal Stem Cells or Chondrocytes? Traditional or Matrix-Assisted? A Systematic Review and Meta-Analyses". Stem Cells International 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/9201492.
Texto completo da fonteHuselstein, C., Y. Li e X. He. "Mesenchymal stem cells for cartilage engineering". Bio-Medical Materials and Engineering 22, n.º 1-3 (2012): 69–80. http://dx.doi.org/10.3233/bme-2012-0691.
Texto completo da fonteMin, Byoung-Hyun, Hyun Jung Lee e Young Jick Kim. "Cartilage Repair Using Mesenchymal Stem Cells". Journal of the Korean Medical Association 52, n.º 11 (2009): 1077. http://dx.doi.org/10.5124/jkma.2009.52.11.1077.
Texto completo da fonteSavkovic, Vuk, Hanluo Li, Jong-Keun Seon, Michael Hacker, Sandra Franz e Jan-Christoph Simon. "Mesenchymal Stem Cells in Cartilage Regeneration". Current Stem Cell Research & Therapy 9, n.º 6 (22 de setembro de 2014): 469–88. http://dx.doi.org/10.2174/1574888x09666140709111444.
Texto completo da fonteLiao, Jinfeng, e Yunfeng Lin. "Stem Cells and Cartilage Tissue Engineering". Current Stem Cell Research & Therapy 13, n.º 7 (29 de agosto de 2018): 489. http://dx.doi.org/10.2174/1574888x1307180803122513.
Texto completo da fonte