Literatura científica selecionada sobre o tema "Carrollian holography"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Carrollian holography".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Carrollian holography"

1

Nguyen, Kevin, e Peter West. "Carrollian Conformal Fields and Flat Holography". Universe 9, n.º 9 (26 de agosto de 2023): 385. http://dx.doi.org/10.3390/universe9090385.

Texto completo da fonte
Resumo:
The null conformal boundary I of Minkowski spacetime M plays a special role in scattering theory, as it is the locus where massless particle states are most naturally defined. We construct quantum fields on I, which create these massless states from the vacuum and transform covariantly under Poincaré symmetries. Because the latter symmetries act as Carrollian conformal isometries of I, these quantum fields are Carrollian conformal fields. This group theoretic construction is intrinsic to I by contrast to existing treatments in the literature. However, we also show that the standard relativistic massless quantum fields in M, when pulled back to I, provide a realisation of these Carrollian conformal fields. This correspondence between bulk and boundary fields should constitute a basic entry in the dictionary of flat holography. Finally, we show that I provides a natural parametrisation of the massless particles as described by irreducible representations of the Poincaré group and that in an appropriate conjugate basis, they indeed transform like Carrollian conformal fields.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Have, Emil, Kevin Nguyen, Stefan Prohazka e Jakob Salzer. "Massive carrollian fields at timelike infinity". Journal of High Energy Physics 2024, n.º 7 (5 de julho de 2024). http://dx.doi.org/10.1007/jhep07(2024)054.

Texto completo da fonte
Resumo:
Abstract Motivated by flat space holography, we demonstrate that massive spin-s fields in Minkowski space near timelike infinity are massive carrollian fields on the carrollian counterpart of anti-de Sitter space called Ti. Its isometries form the Poincaré group, and we construct the carrollian spin-s fields using the method of induced representations. We provide a dictionary between massive carrollian fields on Ti and massive fields in Minkowski space, as well as to fields in the conformal primary basis used in celestial holography. We show that the symmetries of the carrollian structure naturally account for the BMS charges underlying the soft graviton theorem. Finally, we initiate a discussion of the correspondence between massive scattering amplitudes and carrollian correlation functions on Ti, and introduce physical definitions of detector operators using a suitable notion of conserved carrollian energy-momentum tensor.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mason, Lionel, Romain Ruzziconi e Akshay Yelleshpur Srikant. "Carrollian amplitudes and celestial symmetries". Journal of High Energy Physics 2024, n.º 5 (2 de maio de 2024). http://dx.doi.org/10.1007/jhep05(2024)012.

Texto completo da fonte
Resumo:
Abstract Carrollian holography aims to express gravity in four-dimensional asymptotically flat spacetime in terms of a dual three-dimensional Carrollian CFT living at null infinity. Carrollian amplitudes are massless scattering amplitudes written in terms of asymptotic or null data at $$ \mathcal{I} $$ I . These position space amplitudes at $$ \mathcal{I} $$ I are to be re-interpreted as correlation functions in the putative dual Carrollian CFT. We derive basic results concerning tree-level Carrollian amplitudes yielding dynamical constraints on the holographic dual. We obtain surprisingly compact expressions for n-point MHV gluon and graviton amplitudes in position space at $$ \mathcal{I} $$ I . We discuss the UV/IR behaviours of Carrollian amplitudes and investigate their collinear limit, which allows us to define a notion of Carrollian OPE. By smearing the OPE along the generators of null infinity, we obtain the action of the celestial symmetries — namely, the S algebra for Yang-Mills theory and Lw1+∞ for gravity — on the Carrollian operators. As a consistency check, we systematically relate our results with celestial amplitudes using the link between the two approaches. Finally, we initiate a direct connection between twistor space and Carrollian amplitudes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Saha, Amartya. "w1+∞ and Carrollian holography". Journal of High Energy Physics 2024, n.º 5 (13 de maio de 2024). http://dx.doi.org/10.1007/jhep05(2024)145.

Texto completo da fonte
Resumo:
Abstract In a 1 + 2D Carrollian conformal field theory, the Ward identities of the two local fields $$ {S}_0^{+} $$ S 0 + and $$ {S}_1^{+} $$ S 1 + , entirely built out of the Carrollian conformal stress-tensor, contain respectively up to the leading and the subleading positive helicity soft graviton theorems in the 1 + 3D asymptotically flat space-time. This work investigates how the subsubleading soft graviton theorem can be encoded into the Ward identity of a Carrollian conformal field $$ {S}_2^{+} $$ S 2 + . The operator product expansion (OPE) $$ {S}_2^{+}{S}_2^{+} $$ S 2 + S 2 + is constructed using general Carrollian conformal symmetry principles and the OPE commutativity property, under the assumption that any time-independent, non-Identity field that is mutually local with $$ {S}_0^{+} $$ S 0 + , $$ {S}_1^{+} $$ S 1 + , $$ {S}_2^{+} $$ S 2 + has positive Carrollian scaling dimension. It is found that, for this OPE to be consistent, another local field $$ {S}_3^{+} $$ S 3 + must automatically exist in the theory. The presence of an infinite tower of local fields $$ {S}_{k\ge 3}^{+} $$ S k ≥ 3 + is then revealed iteratively as a consistency condition for the $$ {S}_2^{+}{S}_{k-1}^{+} $$ S 2 + S k − 1 + OPE. The general $$ {S}_k^{+}{S}_l^{+} $$ S k + S l + OPE is similarly obtained and the symmetry algebra manifest in this OPE is found to be the Kac-Moody algebra of the wedge sub-algebra of w1+∞. The Carrollian time-coordinate plays the central role in this purely holographic construction. The 2D Celestial conformally soft graviton primary $$ {H}^k\left(z,\overline{z}\right) $$ H k z z ¯ is realized to be contained in the Carrollian conformal primary $$ {S}_{1-k}^{+}\left(t,z,\overline{z}\right) $$ S 1 − k + t z z ¯ . Finally, the existence of the infinite tower of fields $$ {S}_k^{+} $$ S k + is shown to be directly related to an infinity of positive helicity soft graviton theorems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bagchi, Arjun, Prateksh Dhivakar e Sudipta Dutta. "AdS Witten diagrams to Carrollian correlators". Journal of High Energy Physics 2023, n.º 4 (28 de abril de 2023). http://dx.doi.org/10.1007/jhep04(2023)135.

Texto completo da fonte
Resumo:
Abstract Carrollian Conformal Field Theories (CFTs) have been proposed as co-dimension one holographic duals to asymptotically flat spacetimes as opposed to Celestial CFTs which are co-dimension two. In this paper, drawing inspiration from Celestial holography, we show by a suitable generalisation of the flat space limit of AdS that keeps track of the previously disregarded null direction, one can reproduce Carrollian CFT correlation functions from AdS Witten diagrams. In particular, considering Witten diagrams in AdS4, we reproduce two and three-point correlation functions for three dimensional Carrollian CFTs in the so-called delta-function branch. Along the way, we construct non-trivial Carrollian three-point functions in the delta-branch by considering a collinear limit. We also obtain a generalised anti-podal matching condition that now depends on the retarded time direction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bagchi, Arjun, Prateksh Dhivakar e Sudipta Dutta. "Holography in flat spacetimes: the case for Carroll". Journal of High Energy Physics 2024, n.º 8 (20 de agosto de 2024). http://dx.doi.org/10.1007/jhep08(2024)144.

Texto completo da fonte
Resumo:
Abstract We compare and contrast the two approaches of holography in asymptotically flat spacetimes, viz. the co-dimension two Celestial approach based on the Mellin transformation and the co-dimension one Carrollian approach based on the modified Mellin and elucidate how some of the problems of the Celestial approach can be rectified by the Carrollian one. Considering flat holography as a limit from AdS/CFT makes a co-dimension one dual more plausible, and our previous construction of Carrollian correlations from AdS Witten diagrams is testimony to this. In this paper, we show how to generalize our earlier analysis for operators with spin. We work out a large number of explicit non-trivial examples (twelve) and show matching between the limit of AdS4 Witten diagrams and 3d boundary symmetry considerations, thus making the case for the Carrollian dual even stronger.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Salzer, Jakob. "An embedding space approach to Carrollian CFT correlators for flat space holography". Journal of High Energy Physics 2023, n.º 10 (13 de outubro de 2023). http://dx.doi.org/10.1007/jhep10(2023)084.

Texto completo da fonte
Resumo:
Abstract Carrollian conformal field theories (carrollian CFTs) are natural field theories on null infinity of an asymptotically flat spacetime or, more generally, geometries with conformal carrollian structure. Using a basis transformation, gravitational S-matrix elements can be brought into the form of correlators of a carrollian CFT. Therefore, it has been suggested that carrollian CFTs could provide a co-dimension one dual description to gravity in asymptotically flat spacetimes. In this work, we construct an embedding space formalism for three-dimensional carrollian CFTs and use it to determine two- and three-point correlators. These correlators are fixed by the global subgroup, ISO(1, 3), of the carrollian conformal symmetries, i.e., the Bondi-van der Burg-Metzner-Sachs symmetries (BMS). The correlators coincide with well-known two- and three-point scattering amplitudes in Minkowski space written with respect to a basis of asymptotic position states.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Donnay, Laura, Adrien Fiorucci, Yannick Herfray e Romain Ruzziconi. "Carrollian Perspective on Celestial Holography". Physical Review Letters 129, n.º 7 (12 de agosto de 2022). http://dx.doi.org/10.1103/physrevlett.129.071602.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ciambelli, Luca, Charles Marteau, Anastasios C. Petkou, P. Marios Petropoulos e Konstantinos Siampos. "Flat holography and Carrollian fluids". Journal of High Energy Physics 2018, n.º 7 (julho de 2018). http://dx.doi.org/10.1007/jhep07(2018)165.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Donnay, Laura, Adrien Fiorucci, Yannick Herfray e Romain Ruzziconi. "Bridging Carrollian and celestial holography". Physical Review D 107, n.º 12 (30 de junho de 2023). http://dx.doi.org/10.1103/physrevd.107.126027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Carrollian holography"

1

Rivera, betancour David. "Aspects of Carrollian physics". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAX146.

Texto completo da fonte
Resumo:
Nous étudions divers aspects et applications gravitationnelles de la dynamique carrollienne. Les systèmes carrolliens se manifestent lorsque la vitesse de la lumière s’annule. Nous construisons des équations dynamiques générales carrolliennes et galiléennes valables pour des géométries carrolliennes/newtoniennes arbitraires, courbes et dépendantes du temps, l’accent étant mis sur l’hydrodynamique. La présence d'un courant U(1) est aussi prise en compte. Cette démarche suit deux approches : basée sur l'invariance de l'action sous Carroll/Galilée et Weyl, ou par la prise d'une limite de grande/petite vitesse de la lumière dans le tenseur énergie-impulsion relativiste et le courant U(1). La dynamique est régie par la conservation d'un ensemble de moments qui résultent soit de la variation de l'action par rapport aux différentes composantes de la géométrie carrollienne/newtonienne, soit apparaissent à différents ordres dans le développement en c du tenseur énergie-impulsion. Ces deux approches concordent, mais il est montré que la procédure de limite est plus riche en raison de la possibilité d’embrasser des situations avec des degrés de liberté supplémentaires. En fait, c'est cette liberté qui nous permet de déterminer dans quelles conditions l'invariance hydrodynamique est préservée lorsqu’on prend la limite de grande/petite vitesse de la lumière. Nous montrons que dans la limite galiléenne standard l'invariance hydrodynamique est perdue, mais récupérée en ajoutant deux degrés de liberté supplémentaires dans le développement en c du courant de chaleur et des courants U(1). Dans le cas carrollien, l'invariance sous changement de repère hydrodynamique survit lorsque le comportement du tenseur énergie-impulsion est inspiré des fluides carrolliens holographiques. Nous présentons enfin l'analyse des courants associés aux isométries carrolliennes/galiléennes. Dans le cas carrollien/galiléen, ces courants ne sont pas toujours conservés et des conditions supplémentaires doivent être imposées.La dérivation présentée pour la dynamique carrollienne transcende les fluides. Nous étudions le champ scalaire conforme sur une géométrie carrollienne générale et analysons les extensions carrolliennes de la théorie de Chern-Simons gravitationnelle à trois dimensions. Dans cette analyse, on découvre des dynamiques électriques et magnétiques codées à différents ordres en puissances de la vitesse de la lumière de l'action relativiste parente. Deux actions supplémentaires apparaissent, nommées paramagnétique et paraélectrique, respectivement.Dans l’esprit de la dualité jauge/gravité plate, nous étudions la dynamique des espace-temps asymptotiquement plats d'un point de vue carrollien. Nous montrons que les espace-temps à Ricci nul sont exprimés dans une jauge covariante vis-à-vis du bord nul. Cette jauge est une extension de la jauge de Newman-Unti, valable pour constante cosmologique finie ou nulle. Le cas plat correspond à une limite carrollienne au bord. L'espace de solutions à Ricci nul résultant est constitué d'un ensemble infini de données carrolliennes. On y trouve la géométrie conforme carrollienne, les moments en nombre fini de la théorie du bord et un nombre infini de tenseurs arbitraires, obtenus en développant le tenseur énergie-impulsion relativiste d'origine en série de Laurent. Tous obéissent aux équations de bilan de flux carrolliennes. Pour les solutions de type Petrov algébrique, cette structure carrollienne au bord permet de déterminer les charges gravitationnelles usuelles. Nous retrouvons le développement multipolaire de la masse et du moment angulaire pour la famille de Kerr-Taub-NUT. Nous étudions enfin comment le groupe d'Ehlers de type Möbius agit sur les données du bord nul. Pour les espace-temps stationnaires, ce groupe se manifeste comme une transformation locale des observables carrolliennes du bord nul. Pour la solution de Kerr-Taub-NUT par exemple, la transformation de la masse/nut est une rotation de l'énergie/Cotton
The purpose of this thesis is to study aspects of Carrollian dynamics and its application to gravity with zero cosmological constant. Carrollian systems arise as the vanishing speed of light limit of Lorentzian theories. Here, general Carrollian and Galilean dynamical equations valid for arbitrary curved and time dependent Carrollian/Newton-Cartan geometries are constructed, with focus on fluid mechanics. In both cases the presence of a U(1) current is considered. The latter is done in two approaches: Carrollian/Galilean and Weyl invariance of the action, and by taking a large/small-c limit of the relativistic energy-momentum tensor and the U(1) current. In both cases, the dynamic is given by the conservation of a set of momenta that arise either as the variation of the action with respect to the different pieces of the Carrollian/Newton-Cartan geometry or appear at different orders in the c-expansion of the energy-momentum tensor. Although these two approaches agree, the limiting procedure is shown to be richer due to the possibility of capturing more general situations with extra degrees of freedom. In fact, it is this freedom that allows us to find under which conditions hydrodynamic-frame invariance is preserved when taking the large/small-c limit. We show that, although in the standard Galilean limit hydrodynamic-frame invariance is lost, it is recovered by adding two extra degrees of freedom in the large-c expansion of the heat current and U(1) currents. In the Carrollian case, hydrodynamic-frame invariance survives when the behavior of the energy-momentum tensor is guided by holographic Carrollian fluid results. We also present the analysis of the currents generated by Carrollian/Galilean isometries. In the Carrollian/Galilean instances, these currents are not guaranteed to be conserved and additional conditions must be imposed.The presented derivation for Carrollian dynamics is not valid only for fluids. The investigation of the scalar field on a general Carrollian spacetime is also presented, as well as the analysis of three dimensional Carrollian gravitational Chern-Simons extensions. In this analysis one finds electric and magnetic dynamics that are encoded at different orders in powers of the speed of light of the relativistic action. We furthermore unravel two more Carrollian Chern-Simons actions, dubbed paramagnetic and paraelectric, respectively.In relation to a possible flat version of the gauge/gravity duality, we also study some aspects of Ricci-flat dynamics from a Carrollian perspective. We show that Ricci-flat spacetimes can be expressed in a gauge covariant with respect to the null boundary. This gauge is an extension of the Newman-Unti gauge which is valid for asymptotically anti-de Sitter and flat spacetimes. The flat instance is reached as the vanishing cosmological constant limit of the anti-de Sitter case, which corresponds to a Carrollian limit at the boundary. Therefore, the resulting Ricci-flat solution space is reconstructed in terms of an infinite set of boundary Carrollian data. These are composed by the Carrollian conformal geometry, a finite set of momenta of the theory hosted at the boundary, and an infinite number of arbitrary tensors, obtained by expanding the original energy-momentum tensor in Laurent series, which obey Carrollian flux balance equations. We take advantage of the latter to define gravitational charges by using Carrollian boundary techniques and restricting the spacetime to the algebraically special Petrov type. With this construction we recover the mass and angular momentum multipolar expansion for the Kerr-Taub-NUT family. We also learn how the hidden Ehlers Möbius group acts on the boundary data at null infinity. We find that, for stationary spacetimes, this group is manifested as a local transformation for the Carrollian geometry and the boundary Carrollian observables. We reproduce the mass/nut rotation as the energy/Cotton rotation for the Kerr-Taub-NUT solution
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ciambelli, Luca. "paving the fluid road to flat holography". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX055/document.

Texto completo da fonte
Resumo:
L’objet de cette thèse est l’étude de la correspondance fluide/gravité, réalisation macroscopique de la dualité AdS/CFT, à la limite où la constante cosmologique tend vers zéro (limite plate). La jauge de Fefferman-Graham, habituellement utilisée dans le dictionnaire holographique, est singulière à la limite plate. Ici, en passant par la formulation hydrodynamique de la théorie dubord, nous construisons une jauge, appelée jauge du développement en série dérivatif, où cette limite est bien définie. Sur la géométrie du bord, elle correspond en fait à faire tendre vers zéro la vitesse de la lumière, situation connue comme limite carrollienne. Un fluide relativiste admet une telle lim-ite, qui donne lieu à l’hydrodynamique carrollienne, étudiée ici en dimension arbitraire, parallèlement à son homologue galiléen. Ensuite, nous montrons spécifiquement en dimensions 4 et 3 du bulk qu’il est possible de construire des solutions asymptotiquement plates des équations d’Einstein partant de systèmes hydrodynamiques conformes carrolliens du bord, qui est ici l’hypersurface degenre lumière à l’infini. En 4 dimensions nous introduisons des conditions d’intégrabilité permettant de resommer la série dérivative sous formefermée. En 3 dimensions toute configuration fluide du bord aboutit à une solution exacte des équations d’Einstein. Les solutions de Bañados sont un sous-ensemble des solutions obtenues et identifiées au moyen de leurs charges de surface. Nous accordons une attention particulière au rôle du repère hydrodynamique, trop souvent ignoré en holographie. Pour terminer, nous nous concentrons sur la formulation de la AdS/CFT dans laquelle la symétrie de Weyl est explicite. Quoique cette symétrie soit un ingrédient incontournable de la correspondance fluide/gravité, elle n’est pas codée dans la formulation habituelle de l’holographie. Nous introduisons une nouvelle jauge et analysonsses conséquences
In this thesis we discuss the limit of vanishing cosmological constant (flat limit) of the fluid/gravity correspondence, which is a macroscopic realization of the AdS/CFT. The holographic dictionary is usually implemented in a gauge(Fefferman-Graham), which does not admit a flat limit. In the hydrodynamic formulation of the boundary theory, we introduce a gauge, dubbed derivative expansion, where such a limit turns out to be smooth. In the boundary we show that this corresponds to a Carrollian limit, i.e. a limit where the speed of light vanishes. We present Carrollian hydrodynamics, together with its dual Galilean counterpart. Then, for 4 and 3 bulk dimensions, we exhibit a resummed line element, which provides an asymptotically flat bulk solution of Einsteinequations starting only from boundary (i.e. null infinity) conformal Carrollian hydrodynamic data. In 4 dimensions we exploit specific integrability conditions, which restrict the achievable class of solutions in the bulk. In 3 dimensions every boundary fluid configuration leads to an exact solution of Einstein’s equations. Bañados solutions are a subset of the solutions reached in this way. They are rigorously identified with their surface charges and the corresponding algebra. We emphasize the choice of hydrodynamic frame, often sidesteppedin holography. Finally, we focus on the formulation of AdS/CFT to encompass Weyl symmetry. This symmetry is a key ingredient of fluid/gravity but it is not naturally encoded in the usual formulation of holography. We introduce an appropriate gauge for realizing it, and analyze its far-reaching consequences
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Vilatte, Matthieu. "Adventures in (thermal) Wonderland". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04791687.

Texto completo da fonte
Resumo:
Le travail que nous présentons dans cette thèse est structuré autour de la notion de théorie des champs et de géométrie, qui sont appliquées à la gravité et la thermalisation.En gravité, notre travail donne un éclairage nouveau sur la structure asymptotique du champ gravitationnel dans le contexte des espace-temps asymptotiquement plats, ceci en utilisant l'information codée sur leur bord conforme. Ce dernier est une hypersurface de genre lumière sur laquelle émerge la physique carrollienne au lieu de la physique relativiste. Une structure carrollienne sur une variété est constituée une métrique dégénérée et un champ de vecteurs couvrant le noyau de cette dernière. Ce vecteur sélectionne une direction particulière qui peut être le point de départ de la description des structures carrolliennes dans un cadre séparé. Nous développons d'abord la géométrie carrollienne, y compris une étude complète des connexions et isométries (conformes). Des actions effectives peuvent vivre sur un arrière-plan carrollien. Les moments canoniques conjugués à la géométrie ou à la connexion peuvent être définis, et la variation de l'action donnera leurs équations de conservation, à partir desquelles les charges isométriques peuvent être bâties.La physique carrollienne émerge également lorsque la vitesse de la lumière tend vers zéro. Cette limite donne généralement plus de descendants carrolliens que ce qui est attendu après une analyse intrinsèque, comme le montrent les exemples explicites des fluides carrolliens, des champs scalaires carrolliens (pour lesquels deux actions, électrique et magnétique, apparaissent dans la limite) et du tenseur de Cotton carrollien. La richesse de la limite est due à sa possibilité de décrire plus de degrés de liberté, ce qui s'avère être un outil fondamental dans l'étude de la relation entre les espace-temps asymptotiquement anti de Sitter et plats.Les espace-temps asymptotiquement plats peuvent être écrits comme une expansion infinie dans une jauge covariante par rapport à leur bord nul. Cette légère extension de la jauge de Newman-Unti est également valable dans AdS, ce qui permet de prendre la limite plate dans le bulk, équivalente à la limite carrollienne sur le bord. Nous démontrons que l'espace des solutions infini des espace-temps Ricci-plat provient en fait du développement en série de Laurent du tenseur énergie-impulsion d'AdS. Ces répliques obéissent à chaque ordre une dynamique carrollienne (lois de flux). Dans le cadre des espaces algébriquement spéciaux de Petrov (pour lesquels le développement infinie se resomme), nous utilisons les lois de flux carrolliennes ainsi que la conservation des tenseurs énergie-impulsion et de Cotton pour construire, du point de vue du bord, deux tours duales de charges du bulk. Parmi elles, nous retrouvons l'expansion mutipolaire de la masse et du moment angulaire pour la famille Kerr-Taub-NUT. La jauge covariante est également le cadre approprié pour dévoiler l'action des symétries cachées de la gravité sur le bord nul. Dans ce travail, nous étudions le cas de la symétrie SL(2,R) d'Ehlers.Du côté de la théorie thermique des champs, nous travaillons sur l'ensemble minimal de données nécessaires pour les décrire à température finie. Alors qu'à température infinie toutes les valeurs moyennes des opérateurs primaires s’annulent, leurs valeurs non nulle dans le cas thermique constituent les données supplémentaires qu'il faut calculer pour caractériser la théorie. Les simulations numériques, la dualité avec un trou noir dans AdS ou une analyse spectrale sont généralement les méthodes employées pour trouver la valeur de ces coefficients. Notre travail propose une nouvelle approche à ce problème en montrant, à partir de deux oscillateurs harmoniques couplés, que ces coefficients sont en fait liés à des graphes conformes de théories de type fishnet. A partir de cette observation, nous avons établi une correspondance entre les fonctions de partition thermique et ces graphes
The work we present in this thesis is structured around the concepts of field theories and geometry, which are applied to gravity and thermalisation.On the gravity side, our work aims at shedding new light on the asymptotic structure of the gravitational field in the context of asymptotically flat spacetimes, using information encoded on the conformal boundary. The latter is a null hypersurface on which Carrollian physics instead of relativistic physics is at work. A Carroll structure on a manifold is a degenerate metric and a vector field spanning the kernel of the latter. This vector selects a particular direction which can be the starting point for describing Carroll structures in a split frame. We first elaborate on the geometry one can construct on such a manifold in this frame, including a comprehensive study of connections and (conformal isometries). Effective actions can be defined on a Carrollian background. Canonical momenta conjugate to the geometry or the connection are introduced, and the variation of the action shall give their conservation equations, upon which isometric charges can be reached.Carrollian physics is also known to emerge as the vanishing speed of light of relativistic physics. This limit usually exhibits more Carrollian descendants than what might be expected from a naive intrinsic analysis, as shown in the explicit examples of Carrollian fluids, Carrollian scalar fields (for which two actions, electric and magnetic arise in the limit) and the Carrollian Chern-Simons action. The richness of the limiting procedure is due to this versatility in describing a palette of degrees of freedom. This turns out to be an awesome tool in studying the relationship between asymptotically anti de Sitter (AdS) and flat spacetimes.Metrics on asymptotically flat spacetimes can be expressed as an infinite expansion in a gauge, covariant with respect to their null boundaries. This slight extension of the Newman-Unti gauge is shown to be valid also in AdS, which allows to take the flat limit in the bulk i.e. the Carrollian limit on the boundary, while preserving this covariance feature. We demonstrate that the infinite solution space of Ricci-flat spacetimes actually arises from the Laurent expansion of the AdS boundary energy-momentum tensor. These replicas obey at each order Carrollian dynamics (flux/balance laws). Focusing our attention to Petrov algebraically special spacetimes (for which the infinite expansion resums), we use the Carrollian flux/balance laws together with the conservation of the energy-momentum and Cotton tensors to build two dual towers of bulk charges from a purely boundary perspective. Among them we recover the mass and angular momentum mutipolar moments for the Kerr-Taub-NUT family. The covariant gauge is also the appropriate framework to unveil the action of hidden symmetries of gravity on the null boundary. In this thesis we study exhaustively the case of Ehlers' $SL(2,mathbb{R})$ symmetry.On the side of thermal field theory we see that while at infinite temperature a CFT is described by its spectrum and the OPE coefficients, additional data is needed in the thermal case. These are the average values of primary operators, completely determined up to a constant coefficient. Numerical simulations, duality with black-hole states in AdS or spectral analyses are the methods usually employed to uncover the latter. Our work features a new breadth. Starting from two coupled harmonic oscillators, we show that they are related to conformal ladder graphs of fishnet theories. This observation is the first step for setting a new correspondence between thermal partition functions and graphs
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia