Artigos de revistas sobre o tema "Carbonic nanoparticles"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Carbonic nanoparticles".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Demchenko, Alexander. "Excitons in Carbonic Nanostructures". C — Journal of Carbon Research 5, n.º 4 (12 de novembro de 2019): 71. http://dx.doi.org/10.3390/c5040071.
Texto completo da fonteLizoňová, Denisa, Monika Majerská, Vlastimil Král, Michal Pechar, Robert Pola, Marek Kovář e František Štěpánek. "Antibody-pHPMA functionalised fluorescent silica nanoparticles for colorectal carcinoma targeting". RSC Advances 8, n.º 39 (2018): 21679–89. http://dx.doi.org/10.1039/c8ra03487g.
Texto completo da fonteClark, Andrew J., Devin T. Wiley, Jonathan E. Zuckerman, Paul Webster, Joseph Chao, James Lin, Yun Yen e Mark E. Davis. "CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing". Proceedings of the National Academy of Sciences 113, n.º 14 (21 de março de 2016): 3850–54. http://dx.doi.org/10.1073/pnas.1603018113.
Texto completo da fonteMikolajczak, Dorian J., e Beate Koksch. "Peptide–Gold Nanoparticle Conjugates as Artificial Carbonic Anhydrase Mimics". Catalysts 9, n.º 11 (29 de outubro de 2019): 903. http://dx.doi.org/10.3390/catal9110903.
Texto completo da fonteGößl, Dorothée, Helena Singer, Hsin-Yi Chiu, Alexandra Schmidt, Martina Lichtnecker, Hanna Engelke e Thomas Bein. "Highly active enzymes immobilized in large pore colloidal mesoporous silica nanoparticles". New Journal of Chemistry 43, n.º 4 (2019): 1671–80. http://dx.doi.org/10.1039/c8nj04585b.
Texto completo da fonteAlhumaydhi, Fahad A. "Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their In Vitro and In Vivo Biological Activities". Journal of Nanomaterials 2022 (30 de junho de 2022): 1–11. http://dx.doi.org/10.1155/2022/5544475.
Texto completo da fonteVinoba, Mari, Margandan Bhagiyalakshmi, Soon Kwan Jeong, Sung Chan Nam e Yeoil Yoon. "Carbonic Anhydrase Immobilized on Encapsulated Magnetic Nanoparticles for CO2Sequestration". Chemistry - A European Journal 18, n.º 38 (9 de agosto de 2012): 12028–34. http://dx.doi.org/10.1002/chem.201201112.
Texto completo da fonteCabaleiro-Lago, Celia, e Martin Lundqvist. "The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II". Molecules 25, n.º 19 (25 de setembro de 2020): 4405. http://dx.doi.org/10.3390/molecules25194405.
Texto completo da fonteBugárová, Nikola, Zdenko Špitálsky, Matej Mičušík, Michal Bodík, Peter Šiffalovič, Martina Koneracká, Vlasta Závišová et al. "A Multifunctional Graphene Oxide Platform for Targeting Cancer". Cancers 11, n.º 6 (29 de maio de 2019): 753. http://dx.doi.org/10.3390/cancers11060753.
Texto completo da fonteDuart, Marcelo Adriano, Oscar Endrigo Dorneles Rodrigues e Sérgio Roberto Mortari. "Carbonic nanoparticles and C-S-H insertion into cementitious nanocomposite". International Journal of Advanced Engineering Research and Science 5, n.º 5 (2018): 14–19. http://dx.doi.org/10.22161/ijaers.5.5.2.
Texto completo da fonteAssarsson, Anna, Isabel Pastoriza-Santos e Celia Cabaleiro-Lago. "Inactivation and Adsorption of Human Carbonic Anhydrase II by Nanoparticles". Langmuir 30, n.º 31 (28 de julho de 2014): 9448–56. http://dx.doi.org/10.1021/la501413r.
Texto completo da fonteTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi e Jean-Yves Winum. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases". Chemistry - A European Journal 21, n.º 29 (12 de maio de 2015): 10306–9. http://dx.doi.org/10.1002/chem.201501037.
Texto completo da fonteTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi e Jean-Yves Winum. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases". Chemistry - A European Journal 21, n.º 29 (8 de junho de 2015): 10249. http://dx.doi.org/10.1002/chem.201501917.
Texto completo da fonteNovikov, Ilya V., Marina A. Pigaleva, Sergei S. Abramchuk, Vyacheslav S. Molchanov, Olga E. Philippova e Marat O. Gallyamov. "Chitosan composites with Ag nanoparticles formed in carbonic acid solutions". Carbohydrate Polymers 190 (junho de 2018): 103–12. http://dx.doi.org/10.1016/j.carbpol.2018.02.076.
Texto completo da fonteTatiparti, Katyayani, Mohd Ahmar Rauf, Samaresh Sau e Arun K. Iyer. "Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor". Molecules 25, n.º 10 (19 de maio de 2020): 2362. http://dx.doi.org/10.3390/molecules25102362.
Texto completo da fonteDoğan, Murat, Ümit Muhammet Koçyiğit, Duygu Taşkın, Beyza Nur Yılmaz e Turgut Taşkın. "Preparation and characterization of chitosan nanoparticles with extracts of Rheum ribes, evaluation of biological activities of extracts and extract loaded nanoparticles". International Journal of Secondary Metabolite 11, n.º 4 (9 de setembro de 2024): 751–64. http://dx.doi.org/10.21448/ijsm.1425978.
Texto completo da fonteBillsten, Peter, Uno Carlsson, Bengt Harald Jonsson, Gerd Olofsson, Fredrik Höök e Hans Elwing. "Conformation of Human Carbonic Anhydrase II Variants Adsorbed to Silica Nanoparticles". Langmuir 15, n.º 19 (setembro de 1999): 6395–99. http://dx.doi.org/10.1021/la980288u.
Texto completo da fonteAko-Adounvo, Ann-Marie, e Pradeep K. Karla. "Preparation and In Vitro Testing of Brinzolamide-Loaded Poly Lactic-Co-Glycolic Acid (PLGA) Nanoparticles for Sustained Drug Delivery". Journal of Clinical & Translational Ophthalmology 2, n.º 1 (9 de janeiro de 2024): 1–14. http://dx.doi.org/10.3390/jcto2010001.
Texto completo da fonteAntal, Iryna, Martina Koneracka, Martina Kubovcikova, Vlasta Zavisova, Alena Jurikova, Iryna Khmara, Maria Omastova et al. "Targeting of carbonic anhydrase IX-positive cancer cells by glycine-coated superparamagnetic nanoparticles". Colloids and Surfaces B: Biointerfaces 205 (setembro de 2021): 111893. http://dx.doi.org/10.1016/j.colsurfb.2021.111893.
Texto completo da fonteTalebzadeh, Zeinab, Qahtan A. Yousif, Maryam Masjedi-Arani e Masoud Salavati-Niasari. "Sonochemistry fabrication of Er2Sn2O7 nanoparticles with advanced photocatalytic performance of their carbonic nanocomposites". International Journal of Hydrogen Energy 47, n.º 25 (março de 2022): 12615–28. http://dx.doi.org/10.1016/j.ijhydene.2022.02.025.
Texto completo da fonteShatokhin, A. N., A. V. Egorov, K. I. Maslakov e F. N. Putilin. "Laser synthesis of metal–metaloxide nanoparticles on carbonic materials in an electric field". Bulletin of the Russian Academy of Sciences: Physics 80, n.º 4 (abril de 2016): 387–92. http://dx.doi.org/10.3103/s1062873816040286.
Texto completo da fonteAl-Dhrub, Ahmed Hussein Ali, Selmihan Sahin, Ismail Ozmen, Ekrem Tunca e Metin Bulbul. "Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles". Process Biochemistry 57 (junho de 2017): 95–104. http://dx.doi.org/10.1016/j.procbio.2017.03.025.
Texto completo da fonteYadav, Renu, Meenal Joshi, Snehal Wanjari, Chandan Prabhu, Swati Kotwal, T. Satyanarayanan e Sadhana Rayalu. "Immobilization of Carbonic Anhydrase on Chitosan Stabilized Iron Nanoparticles for the Carbonation Reaction". Water, Air, & Soil Pollution 223, n.º 8 (2 de setembro de 2012): 5345–56. http://dx.doi.org/10.1007/s11270-012-1284-4.
Texto completo da fonteNovikov, Ilya V., Marina A. Pigaleva, Eduard E. Levin, Sergei S. Abramchuk, Alexander V. Naumkin, Helin Li, Andrij Pich e Marat O. Gallyamov. "The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions". Colloid and Polymer Science 298, n.º 9 (16 de junho de 2020): 1135–48. http://dx.doi.org/10.1007/s00396-020-04683-8.
Texto completo da fonteNie, Guo Chao, Di Si, Gwang Seong Kim, Zhong You Shi, Tanvi Siraj Ratani, Yong Eun Koo Lee e Raoul Kopelman. "A Novel Nonionic, Multi-Surfactant System and Separation Method for the Synthesis of Active Carbonic Anhydrase Nanoparticles". Advanced Materials Research 399-401 (novembro de 2011): 509–13. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.509.
Texto completo da fonteBodor, Marius, Rafael M. Santos, Yi Wai Chiang, Maria Vlad e Tom Van Gerven. "Impacts of Nickel Nanoparticles on Mineral Carbonation". Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/921974.
Texto completo da fonteAntipov, S. A., T. A. Feduschak, O. V. Kokorev, Ye A. Gereng, G. Ts Dambayev, A. Ye Yermakov, M. A. Uymin e I. A. Khlusov. "Antitumor in vitro and in vivo effects of lipid composites of cisplatin and ferromagnetic nanoparticles capsulated by carbonic coating". Bulletin of Siberian Medicine 9, n.º 1 (28 de fevereiro de 2010): 9–16. http://dx.doi.org/10.20538/1682-0363-2010-1-9-16.
Texto completo da fontePerfetto, Rosa, Sonia Del Prete, Daniela Vullo, Giovanni Sansone, Carmela M. A. Barone, Mosè Rossi, Claudiu T. Supuran e Clemente Capasso. "Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles". Journal of Enzyme Inhibition and Medicinal Chemistry 32, n.º 1 (1 de janeiro de 2017): 759–66. http://dx.doi.org/10.1080/14756366.2017.1316719.
Texto completo da fontePeirce, S., M. E. Russo, R. Perfetto, C. Capasso, M. Rossi, R. Fernandez-Lafuente, P. Salatino e A. Marzocchella. "Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture". Biochemical Engineering Journal 138 (outubro de 2018): 1–11. http://dx.doi.org/10.1016/j.bej.2018.06.017.
Texto completo da fonteKhatibi, Ali, Leila Ma’mani, Reza Khodarahmi, Abbas Shafiee, Parvaneh Maghami, Faizan Ahmad, Nader Sheibani e Ali Akbar Moosavi-Movahedi. "Enhancement of thermal reversibility and stability of human carbonic anhydrase II by mesoporous nanoparticles". International Journal of Biological Macromolecules 75 (abril de 2015): 67–72. http://dx.doi.org/10.1016/j.ijbiomac.2015.01.019.
Texto completo da fonteNogalska, Adrianna, Mario Ammendola, Carla A. M. Portugal, Bartosz Tylkowski, Joao G. Crespo e Ricard Garcia – Valls. "Polysulfone biomimetic membrane for CO2 capture". Functional Materials Letters 11, n.º 05 (outubro de 2018): 1850046. http://dx.doi.org/10.1142/s1793604718500467.
Texto completo da fonteBurunkova, J. A., I. Y. Denisyuk, Vera Bulgakova e Sandor Kokenyesi. "TiO2-Acrylate Nanocomposites Elaborated by UV-Curing with Tunable Properties". Solid State Phenomena 200 (abril de 2013): 173–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.200.173.
Texto completo da fonteStamer, Katerina S., Marina A. Pigaleva, Anastasiya A. Pestrikova, Alexander Y. Nikolaev, Alexander V. Naumkin, Sergei S. Abramchuk, Vera S. Sadykova, Anastasia E. Kuvarina, Valeriya N. Talanova e Marat O. Gallyamov. "Water Saturated with Pressurized CO2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles". Molecules 27, n.º 21 (26 de outubro de 2022): 7261. http://dx.doi.org/10.3390/molecules27217261.
Texto completo da fonteStamer, K. S., M. A. Pigaleva, S. S. Abramchuk e M. O. Gallyamov. "Principles of Gold Nanoparticles Stabilization with Chitosan in Carbonic Acid Solutions Under High CO2 Pressure". Doklady Physical Chemistry 495, n.º 1 (novembro de 2020): 166–70. http://dx.doi.org/10.1134/s0012501620110020.
Texto completo da fonteLundqvist, Martin, Cecilia Andresen, Sara Christensson, Sara Johansson, Martin Karlsson, Klas Broo e Bengt-Harald Jonsson. "Proteolytic Cleavage Reveals Interaction Patterns between Silica Nanoparticles and Two Variants of Human Carbonic Anhydrase". Langmuir 21, n.º 25 (dezembro de 2005): 11903–6. http://dx.doi.org/10.1021/la050477u.
Texto completo da fonteAhmadi, Mohammad Taghi, Neda Mousavi, Truong Khang Nguyen, Seyed Saeid Rahimian Koloor e Michal Petrů. "Carbon Nanoparticle-Based Electro-Thermal Building Block". Applied Sciences 10, n.º 15 (25 de julho de 2020): 5117. http://dx.doi.org/10.3390/app10155117.
Texto completo da fonteYong, Joel K. J., Jiwei Cui, Kwun Lun Cho, Geoff W. Stevens, Frank Caruso e Sandra E. Kentish. "Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration". Langmuir 31, n.º 22 (28 de maio de 2015): 6211–19. http://dx.doi.org/10.1021/acs.langmuir.5b01020.
Texto completo da fonteTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi e Jean-Yves Winum. "Cover Picture: Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases (Chem. Eur. J. 29/2015)". Chemistry - A European Journal 21, n.º 29 (2 de julho de 2015): 10245. http://dx.doi.org/10.1002/chem.201590127.
Texto completo da fonteAkiyoshi, Kazunari, Yoshihiro Sasaki e Junzo Sunamoto. "Molecular Chaperone-Like Activity of Hydrogel Nanoparticles of Hydrophobized Pullulan: Thermal Stabilization with Refolding of Carbonic Anhydrase B". Bioconjugate Chemistry 10, n.º 3 (maio de 1999): 321–24. http://dx.doi.org/10.1021/bc9801272.
Texto completo da fonteBillsten, Peter, Per-Ola Freskgård, Uno Carlsson, Bengt-Harald Jonsson e Hans Elwing. "Adsorption to silica nanoparticles of human carbonic anhydrase II and truncated forms induce a molten-globule-like structure". FEBS Letters 402, n.º 1 (3 de fevereiro de 1997): 67–72. http://dx.doi.org/10.1016/s0014-5793(96)01431-7.
Texto completo da fonteAssarsson, A., I. Nasir, M. Lundqvist e C. Cabaleiro-Lago. "Kinetic and thermodynamic study of the interactions between human carbonic anhydrase variants and polystyrene nanoparticles of different size". RSC Advances 6, n.º 42 (2016): 35868–74. http://dx.doi.org/10.1039/c6ra06175c.
Texto completo da fonteFarah M. Ghazal, Muna H. Jankeer e Hafidh I. Al-Sadi. "Effect of Multi-Walled Carbon Nanotubes on lung tissue and concentration of enzyme Carbonic anhydrase in the New Zealand white rabbit". Tikrit Journal of Pure Science 22, n.º 3 (27 de janeiro de 2023): 49–57. http://dx.doi.org/10.25130/tjps.v22i3.711.
Texto completo da fonteGómez-Ballesteros, Miguel, Vanessa Andrés-Guerrero, Francisco Parra, Jorge Marinich, Beatriz de-las-Heras, Irene Molina-Martínez, Blanca Vázquez-Lasa, Julio San Román e Rocío Herrero-Vanrell. "Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers". Polymers 11, n.º 7 (19 de julho de 2019): 1213. http://dx.doi.org/10.3390/polym11071213.
Texto completo da fonteYadav, Raman P., Sveeta V. Mhatre e Amita A. Bhagit. "Biofabrication of Bifunctional Cerium Oxide Nanoparticles using Phaseolus vulgaris with Enhanced Antioxidant and Carbonic Anhydrase Class 1 Inhibitory Activity". MGM Journal of Medical Sciences 3, n.º 4 (2016): 161–66. http://dx.doi.org/10.5005/jp-journals-10036-1117.
Texto completo da fonteNasir, Irem, Martin Lundqvist e Celia Cabaleiro-Lago. "Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase". Nanoscale 7, n.º 41 (2015): 17504–15. http://dx.doi.org/10.1039/c5nr05360a.
Texto completo da fonteZhang, Shihan, Yongqi Lu e Xinhuai Ye. "Catalytic behavior of carbonic anhydrase enzyme immobilized onto nonporous silica nanoparticles for enhancing CO2 absorption into a carbonate solution". International Journal of Greenhouse Gas Control 13 (março de 2013): 17–25. http://dx.doi.org/10.1016/j.ijggc.2012.12.010.
Texto completo da fonteSarah Abbas Hussein Al-saeed, Muhammed Mizher Radhi e Zuhair Numan Hamed. "A Study into the Electrochemical Behavior of Nano Antibiotics as A Promising Treatment for Helicobacter Pylori Infection by Cyclic Voltammetry". Journal of Techniques 4, n.º 33 (15 de novembro de 2022): 12–20. http://dx.doi.org/10.51173/jt.v4i33.548.
Texto completo da fonteTatiparti, Katyayani, Samaresh Sau, Kaustubh Gawde e Arun Iyer. "Copper-Free ‘Click’ Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia". International Journal of Molecular Sciences 19, n.º 3 (13 de março de 2018): 838. http://dx.doi.org/10.3390/ijms19030838.
Texto completo da fonteStiti, Maamar, Alessandro Cecchi, Marouan Rami, Mohamed Abdaoui, Véronique Barragan-Montero, Andrea Scozzafava, Yannick Guari, Jean-Yves Winum e Claudiu T. Supuran. "Carbonic Anhydrase Inhibitor Coated Gold Nanoparticles Selectively Inhibit the Tumor-Associated Isoform IX over the Cytosolic Isozymes I and II". Journal of the American Chemical Society 130, n.º 48 (3 de dezembro de 2008): 16130–31. http://dx.doi.org/10.1021/ja805558k.
Texto completo da fonteSaada, Mohamed-Chiheb, Jean-Louis Montero, Daniela Vullo, Andrea Scozzafava, Jean-Yves Winum e Claudiu T. Supuran. "Carbonic Anhydrase Activators: Gold Nanoparticles Coated with Derivatized Histamine, Histidine, and Carnosine Show Enhanced Activatory Effects on Several Mammalian Isoforms". Journal of Medicinal Chemistry 54, n.º 5 (10 de março de 2011): 1170–77. http://dx.doi.org/10.1021/jm101284a.
Texto completo da fonte