Teses / dissertações sobre o tema "Caractérisation multi-échelle des matériaux"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Caractérisation multi-échelle des matériaux".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Jozja, Nevila. "Étude de matériaux argileux albanais. Caractérisation "multi-échelle" d'une bentonite magnésienne". Phd thesis, Université d'Orléans, 2003. http://tel.archives-ouvertes.fr/tel-00003740.
Texto completo da fonteHajjaji, Abdelowahed. "Caractérisation multi-échelle et lois de comportement dans les matériaux ferroélectriques". Lyon, INSA, 2007. http://theses.insa-lyon.fr/publication/2007ISAL0090/these.pdf.
Texto completo da fonteThe development of intelligent systems very efficient requires materials of more conversion preferment, whether in terms of stability characteristics in solicitations or in terms of coefficients. The macroscopic properties developed by ferroelectric materials are closely related to the mobility of domains walls, and therefore the switching of dipole moments aligned along the polar axis in each unit cell. This thesis deals as a first time of the preparation and characterization of PMN-xPT ceramics and single crystals PZN-xPT. The multi-scale characterization of quadratic materials that connects the configuration of domains material to its macroscopic behaviour has been studied to understand the mechanisms of depolarization under different excitations (uniaxial stress, temperature and electric field). The non-linear behaviour and hysteretic for ceramics under high level of mechanical and electrical excitations has been modelled by a model constructed from non-linear elements. Finally, the application of materials PZN-12PT was also studied. The objective of this study is to test and compare ceramic and single crystal shapes in terms of vibration damping
Liu, Taiqu. "Caractérisation multi-échelle de l'amortissement des matériaux composites à fibres végétales". Thesis, Bourgogne Franche-Comté, 2021. http://indexation.univ-fcomte.fr/nuxeo/site/esupversions/7f465635-2b19-4a9c-8100-84b95d1c4521.
Texto completo da fonteVibration and noise are unavoidable problems in engineering products and daily life. Thus, the knowledge of the damping performances of engineering materials and the factors that affect these properties are highly required. Plant fiber composites (PFCs) have become a new option when considering the compromise between damping and stiffness. Current researches on damping are mainly work at the macroscale and the damping sources and mechanisms in plant fiber composites are complex and not fully revealed. Thus, the main objective of this thesis is to provide a better characterization and understanding of damping in PFCs using various experimental techniques at different scales and on a wide range of frequency. This thesis starts with the review of literature on the damping behavior of PFCs. Then, the influences of many parameters including matrix types, fiber architecture, woven pattern, temperature, frequency and moisture content on the damping properties of PFCs are investigated based on dynamic mechanical analysis (DMA) and modal analysis. Furthermore, a constant amplitude method as well as constant stiffness method are used to map the in situ damping properties at the microscale based on grid dynamic Nanoindentation (DNI). These results are then compared to those obtained from dynamic mechanical analysis and modal test methods. The results from DNI show the contribution of each component (fiber, matrix and interface) on energy dissipation. Finally, the damping properties measured using these three experimental techniques at the three different scales are plotted on a wide frequency and temperature range
Kerdja, Youcef. "Caractérisation 3D et modélisation multi-échelle des matériaux actifs de batteries". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI033.
Texto completo da fonteFour NMC type materials having the same chemical composition (LiNi1/3Mn1/3Co1/3O2) but different microstructures were synthesized and then used as positive electrodes to probe the impact of the microstructure over their electrochemical performances. FIB-SEM tomography was used to get 3D images of the synthesized materials, compute their ionic tortuosity and link the results to the observed electrochemical performances. 2D microscopy images were also obtained on the four materials to go beyond tortuosity computation and realize multi-physics simulations at the microstructure scale on real electrodes. To that end, an electrochemical model at the microstructure level has been developed. This model allows the visualization of the electrochemical kinetics’ as well as lithium liquid and solid diffusion’s influences over the global battery capacity and lithiation heterogeneities at the microstructure level. This study was performed, via a sensitivity analysis of the material physical properties, on a ‘template microstructure’ and allowed us to understand and quantify the different influences’ mechanism and the competition between them over the characteristics of the battery at multiple scales. After that, the developed model was used to simulate galvanostatic discharges on two of the previously extracted 2D microstructures. These simulations allowed us to get a real-time visualization of the local current density as well as of the overpotential at active material-electrolyte interface. The real-time visualization helped us to explain how two NMC type materials having the same chemical composition, but different microstructures led to different discharge capacities
Medjelekh, Dalel. "Caractérisation multi-échelle du comportement thermo hybride des enveloppes hygroscopiques". Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0112/document.
Texto completo da fonteIn front of the building energy issues and environmental impact bound, it appears that the hygroscopic envelopes are a promising track in terms of improving of the thermal comfort, indoor air quality, energy consumption and indoor humidity regulation. Today, we lack reference values of the transient hygrothermal behavior of this envelope type. The physics of moisture transfer in hygroscopic materials (capable to fixing moisture) is complex and makes it difficult modeling of coupled heat and mass transfers. Experimental and numerical approaches of hygrothermal behavior in hygroscopic envelops was therefore conducted with a multi-scale visions. Thus, monitoring of four habited houses was the characterization focus at the first scale. The study on the material scale allowed to characterize the properties related to the heat and mass transfer. The hygrothermal coupling has been the subject of a specific study at a wall scale. Finite differences and finite elements implementations have resulted in a detailed analysis of transfers across cell-test with a reduction work of order required to limit the calculation time. Emphasis is placed on the effects of moisture brought in indoor environments in order to validate a digital tool developed in this work. The selected hygroscopic envelopes are composed of biosourced materials such as massive wood, wood concrete, earth and straw. Envelopes of travertine and plasterboard are also studied
Ouali, Chakib. "Caractérisation multi-échelle de l’écoulement de mousses en milieux poreux en contexte EOR". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS001.
Texto completo da fonteFoam has long been used as a mobility control agent in Enhanced Oil Recovery (EOR) processes to enhance sweep efficiency and overcome gravity segregation, viscous fingering and gas channeling, which are gas-related problems when the latter is injected alone in the reservoir. However, the systematic use of foam in reservoir engineering requires more in-depth knowledge of its dynamics in porous media. The literature shows two types of experimental approaches based either on petrophysical studies carried out on 3D porous systems and based on pressure measurements, or on microfluidic studies that allow direct visualization of foam flow but are limited to 1D or 2D model systems. The research investigated in this thesis aims to bridge the gap between these two approaches. The proposed strategy is to characterize in situ the foam flow in 3D porous media with techniques providing a wide range of temporal and spatial resolutions. A coreflood setup giving access to classical petro-physical measurements was developed and then coupled to different observation cells designed specifically for each characterization instrument. First, an X-ray CT scanner was used to describe and visualize the foam flow at the core scale. The rheological behavior of foam on this scale was studied as a function of the injection conditions such as gas velocity and foam quality. Secondly, Small Angle Neutron Scattering (SANS) was used to probe the foam structure in situ during the flow, on a wide length scale, up to three orders of magnitude in size. In situ foam texture (size and density of bubbles and lamellae) was measured for different foam qualities and at different propagation distances from the injection point. A comparison to the geometric characteristics of the porous medium was also realized. Thirdly, High Resolution Fast X-ray Micro-tomography on a Synchrotron was used to visualize the foam flow at the pore scale. This allowed to confirm visually some foam characteristics measured with SANS and to investigate on local intermittent gas trapping and mobilization. This study is an important step in the multi-scale characterization of foam flow in 3D porous media and provides some answers to certain generally accepted assumptions
Ntenga, Richard. "Modélisation multi-échelle et caractérisation de l'anisotropie élastique de fibres végétales pour le renforcement de matériaux composites". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2007. http://tel.archives-ouvertes.fr/tel-00718126.
Texto completo da fonteOuali, Chakib. "Caractérisation multi-échelle de l’écoulement de mousses en milieux poreux en contexte EOR". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS001/document.
Texto completo da fonteFoam has long been used as a mobility control agent in Enhanced Oil Recovery (EOR) processes to enhance sweep efficiency and overcome gravity segregation, viscous fingering and gas channeling, which are gas-related problems when the latter is injected alone in the reservoir. However, the systematic use of foam in reservoir engineering requires more in-depth knowledge of its dynamics in porous media. The literature shows two types of experimental approaches based either on petrophysical studies carried out on 3D porous systems and based on pressure measurements, or on microfluidic studies that allow direct visualization of foam flow but are limited to 1D or 2D model systems. The research investigated in this thesis aims to bridge the gap between these two approaches. The proposed strategy is to characterize in situ the foam flow in 3D porous media with techniques providing a wide range of temporal and spatial resolutions. A coreflood setup giving access to classical petro-physical measurements was developed and then coupled to different observation cells designed specifically for each characterization instrument. First, an X-ray CT scanner was used to describe and visualize the foam flow at the core scale. The rheological behavior of foam on this scale was studied as a function of the injection conditions such as gas velocity and foam quality. Secondly, Small Angle Neutron Scattering (SANS) was used to probe the foam structure in situ during the flow, on a wide length scale, up to three orders of magnitude in size. In situ foam texture (size and density of bubbles and lamellae) was measured for different foam qualities and at different propagation distances from the injection point. A comparison to the geometric characteristics of the porous medium was also realized. Thirdly, High Resolution Fast X-ray Micro-tomography on a Synchrotron was used to visualize the foam flow at the pore scale. This allowed to confirm visually some foam characteristics measured with SANS and to investigate on local intermittent gas trapping and mobilization. This study is an important step in the multi-scale characterization of foam flow in 3D porous media and provides some answers to certain generally accepted assumptions
Walbron, Amaury. "Analyse rapide d’images 3D de matériaux hétérogènes : identification de la structure des milieux et application à leur caractérisation multi-échelle". Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2015/document.
Texto completo da fonteDigital simulation is a wide-spreading tool for composite materials design and choice. Indeed it allows to generate and test digitally various structures more easily and quickly than with real manufacturing and tests processes. A feedback is needed following the choice and the fabrication of a virtual material in order to simultaneously validate the simulation and the fabrication process. With this aim, models similar to generated virtual structures are obtained by digitization of manufacturing materials. The same simulation algorithms can then be applied and allow to verify the forecasts. This thesis is also about the modelling of composite materials from 3D images, in order to rediscover in them the original virtual material. Image processing methods are applied to images to extract material structure data, i.e. each constituent localization, and orientation if applicable. These knowledge theoretically allow to simulate thermal and mechanical behavior of structures constituted of studied material. However to accurately represent composites requires practically a very small discretization step. Therefore behavior simulation of a macroscopic structure needs too much discretization points, and then time and memory. Hence a part of this thesis focuses also on determination of equivalent homogeneous material problem, which allows, when resolved, to lighten calculation time for simulation algorithms
Fantou, Alexandre. "Étude multi-physique et multi-échelle de la réaction d'hydratation du sulfate de calcium hémihydraté". Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0099.
Texto completo da fonteBecause of their setting ability, hydraulic binders are used for a wide variety of applications (e.g., construction materials, bone substitutes, ...). The setting reaction is always initiated by mixing one or several fine powders with an aqueous solution. The dissolution of the initial reactive powders results in the formation of a viscous paste, whose properties evolve with time to form a porous monolithic ceramic through the nucleation and precipitation of more stable phase(s). In this thesis, gypsum plaster CaSO4·2H2O obtained by the hydration reaction of calcium sulfate hemihydrate CaSO4·0,5H2O is studied under standard conditions (e.g., liquid/solid mass ratio, temperature and pressure), in order to develop multi-physic and multi-scale characterization techniques in-situ and ex-situ to monitor the evolution of:- the phase composition (rate of dissolution and precipitation) using calorimetric measurements, X-ray diffraction and Fourier-transform infrared spectrophotometry techniques;- the microstructure using scanning electron microscopy and X-ray microtomography;- the mechanical properties using ultrasonic propagation velocity measurement, shear and compressive dynamic mechanical analysis and compressive strength testing. This panel of techniques enabled to monitor and to correlate the various physical transitions occurring during the setting reaction, and thus to draw a global picture of the on-going phenomena
Ait, Aouit Djedjiga. "Approche multi-échelle de caractérisation des surfaces fondée sur l'analyse fractale et multifractale : application en analyse fractographique". Thesis, Tours, 2008. http://www.theses.fr/2008TOUR4047.
Texto completo da fonteThis thesis is devoted to analyse the fracture surfaces of a broken piece. The aim is to discriminate the three principles damage stages advocated in the field of fracture mechanics: fracture initiation stage, fracture propagation stage and finale rupture of the material. The behaviour of these fracture modes is confirmed by the graphs of the fatigue crack growth according to the number of fatigue cycles. These graphs are estimated using a new strategy developed for monitoring fatigue crack growth based on thermographic measures applicable to a wide range of materials regardless of their electrical conductivity and their surface texture. A campaign fatigue testing was conducted on a set of an elastomeric material samples, this material is used for the manufacture of parts of flexible couplings automotive industry. The fracture surfaces are digitized using two techniques: interferometry to obtain maps of heights and scanning electron microscopy to obtain microscopic images. The fracture phenomena being highly nonlinear and non-stationary; therefore, the classical roughness parameters measurement of fracture lines development is not adapted for their characterization. In this investigation, multifractal analysis based on the continuous Wavelet Transform Modulus Maxima method (WTMM) is proposed to give the discrimination of the profile lines development at three principal fracture stages. Indeed, the discrimination of these three fracture stages provides a powerful diagnostic tool to identify the fracture initiation site, and thus delineate the causes of the cracking of the material. We have used the global roughness parameter, called Hurst exponent, to identify the axis of cracking. The fractal analysis of the fracture profiles show that it is possible to reconstruct the crack path. It was established that multifractal analysis based WTMM describes reasonably well the scaling properties of local regularity of the fracture. It performs a fine discrimination of the three fracture zones using the singularities spectra which quantify the strength of singularities and their distribution
Jozja, Nevila. "Etude de matériaux argileux albanais : caractérisation multi-échelle d'une bentonite magnésienne : impact de l'interaction avec le nitrate de plomb sur la perméabilité". Orléans, 2003. https://tel.archives-ouvertes.fr/tel-00003740.
Texto completo da fonteBounichane, Benaamer. "Vers une méthode d'analyse des états de surfaces en sciences des matériaux : de la caractérisation à la recherche de paramètres pertinents". Compiègne, 2009. http://www.theses.fr/2009COMP1844.
Texto completo da fonteThe monitoring and control of the surface are important issues in several areas in Mechanics. Many studies are ongoing to understand the interactions between the surface morphology and the physical mechanisms, chemical or mechanical. A key aspect that still needs improvement is the accurate characterization of surfaces, according to areas and needs, especially when it cornes to extracting the most relevant parameters for characterizing surface and define the level most appropriate for it. The aim of this project is to construct a methodology for processing bidimensional parameters (profiling) which allows, using an expert system to give the user the parameter of surface state associated with optimal desired functionality. We present in this paper the philosophy and methodology of building the system architecture that we called "MesRug". We also explain the technology used for the realization of this system, how to use it and enrich it with new multi-scale characterization of surfaces and new roughness parameters. We also present some developments and analyzes multi-scale integrated into the system "MesRug" to determine the characteristics of a set of elements (scale of measurement, parameter, lifter, to better discriminate the desired property, statistical methods used to determine the relevance of roughness parameters, and applications for various studies conducted using this approach
Chavez, Castillo Ana Gabriela. "Apport des modèles réduits pour la caractérisation thermique de matériaux de construction : mesures in situ d'isolants et étude multi-échelle d'un bois sec". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST040.
Texto completo da fonteIn numerical thermal simulation, the inverse problem consists in finding one or more parameters of the discretized heat equation from temperature measurements. This is a complex procedure that often remains limited to simple geometry. The idea is then to use modal-type thermal reduced models, which will considerably reduce the number of unknowns while maintaining satisfactory accuracy over the entire modelled domain. These models will then allow to extend the technique of inverse problems to any type of geometry, whatever its complexity.The objective of this thesis work is to evaluate the efficiency of such a method for an application related to building thermics, in which one seeks to identify the properties of insulating materials (thermal capacity and conductivity).The main work has been the application of this technique for an in situ measurement, using a hot wire probe, which has so far been unsuitable for thermal insulation.A second application of this technique to solve inverse problems by reduced model is the characterization of a bio-sourced material from tomographic surveys at the microscopic scale.For these two applications, the digital developments carried out have allowed the realization of encouraging first experimental trials
Marteau, Julie. "Caractérisation multi-échelle et analyse par essai d'indentation instrumentée de matériaux à gradient générés par procédés mécaniques et thermochimiques de traitement de surface". Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-00937956.
Texto completo da fonteKahalerras, Mohamed Khaled. "Caractérisation des matériaux piézoélectriques dédiés à la génération des décharges plasmas pour applications biomédicales". Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0019/document.
Texto completo da fonteDue to intensive development efforts during the past decade, piezoelectric transformers havebecome an attractive alternative solution compared to the con-ventionally used technologies forcold plasma generation. Their high efficiency, thin-shaped dimensions and low voltage supplymake them serious and original candidates for numerous low power applications, particularly inbiomedical field. Operating as a plasma generator, the electromechanical conversion within thetransformer is accompanied by mechanical and dielectric losses, often converted into heat. On topof these effects, the discharge is likely to influence the electrical behavior of the device. Thedynamic and highly non-linear evolution of the dis-charge leads to an unknown behavior ofelectrical properties. Consequently, the transformer supply stage is an active research subject inthe same way as the trans-former itself. Moreover, considering the configuration of the generationprocess, which positions the piezoelectric material as the source and the spot of the plasmadischarge, it becomes necessary to consider the viability of the device. The ioniza-tion of thegaseous environment surrounding the generator causes complex elec-tronic effects, which canlead to material deposition on the surface of the generator and thus modify or even degrade it. It iswithin this framework, at the interface between electrical engineering and material science, thatthis thesis is articulated. A first part is intended to develop a setup for numerical control of thedevice using a digital phase-locked loop to ensure its continuous operation in different operatingconditions. Subsequently, a model of the plasma generator in configurations close to dielectricbarrier discharges is proposed; Simulations allow an estimation of the discharge power from anexperimental identification of the model parameters. In a second part, we seek to establish acorrelation between the material structure and its electrical properties based on a multi-scalecharacterization methodology, before and after plasma discharge. The study focuses mainly onthe surface evolution in terms of the crystalline structure and the chemical composition, related tothe over-all properties of the piezoelectric transformer before and after discharge generation.Finally, a temperature study that concerns the investigation of the effects of self-heating of thegenerator in this operating mode is performed
Khawaja, Zahra. "Analyse des états de surface en science des matériaux : caractérisation multi-échelles par ondelette et détermination de l'anisotropie des surfaces". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2139/document.
Texto completo da fonteMonitoring and control of the state of the surfaces is a major need for industry. Numerous studies on the interactions between the surface morphology and the physical, chemical or mechanical mechanisms have been conducted. However, a more precise characterization related to industrial domains and needs is necessary. It consists in finding the most relevant roughness parameters that connect the topography of a surface with the physical phenomena which it undergoes or in the properties of the material of which it consisted.In this work, a software designed to characterize the surface condition was developed. This tool named "MesRug" allows to calculate roughness parameters then extract the most relevant ones and to define the most appropriate scale for a given application. The search for the most relevant parameters is done by a statistical approach (analysis of variance ANOVA combined with the theory of Bootstrap).A characterization was performed using (2D) data of measurement on abrasive surfaces. The influence of the form of discrete and continuous wavelet on the detection on the relevant scale mechanism of the abrasion was tested. We conclude that the wavelet decomposition allows to quantify and localize the scales of abrasion of the machining process for all process parameters. However, the relevance of appropriate scales to characterize abrasion does not depend on the shape of the wavelet.In this work, a new 3D roughness parameter is proposed to quantify the smoothness of a surface, independently of the amplitude and the scanning length units of the surface. The efficiency of this parameter is tested on noisy periodic surfaces with varying degrees of anisotropy. The value of this parameter is between zero (perfect sound) and 100 % (sine perfect surface). It enables us to identify the anisotropy directions of regularity for a given surface
Jaffel, Hamouda. "Caractérisation multi-échelles de matériaux poreux en évolution : cas du plâtre". Phd thesis, Ecole Polytechnique X, 2006. http://tel.archives-ouvertes.fr/tel-00122888.
Texto completo da fonteDufour, Ludovic. "Caractérisation et modélisation du collage structural multi-matériaux sous sollicitation dynamique". Thesis, Valenciennes, 2017. http://www.theses.fr/2017VALE0012/document.
Texto completo da fonteSince few decades, composite material is an innovative field for the reduction of structure weight. However, assemblies of composite together or with metallic part are still a challenging point. Structural bonding is an unavoidable technology for the assemblies of multi-materials structures. Within the development and dimensioning procedure, the use of bonding requires the definition of numerical models and characterization methods. Furthermore, in crashworthiness (explicit code), models must be in agreement of time calculation limitations. The present work propose to define a modelling and characterisation approach for bonding assemblies under dynamic loading. The final aim is to provide a model able to modelling multi-materials structure under crash loading. For it, a characterisation of a phenomenological model (mesoscopic scale) is proposed. This model allow a fine description of the mechanical field in the bonded joint. With test carried out with an Arcan test device specially developed for dynamic loading, the mesoscopic model is used for the identification of an intrinsic failure criteria. Using mesoscopic model and the intrinsic failure criteria, a cohesive model (macroscopic model) in agreement of time calculation limitations is identified. Finally, this model is validated through dynamic tests on multi-materials substructures
Legendre, Jean. "Compréhension et caractérisation multi-échelle de la rupture interfaciale d'assemblages collés (colle crash - tôle galvanisée) pour l'automobile". Thesis, Brest, 2017. http://www.theses.fr/2017BRES0076/document.
Texto completo da fonteThe single lap-shear test is widely used by carmakers to characterize the adhesion of bonded joints. Two criteria govern the validation of the adhesion properties in the bonded joints: the shear strength and the failure mode which has to be cohesive. However, in some special cases, particularly when thin mild galvanized steel substrates were bonded with structural toughened adhesive, an interfacial pattern is obtained instead of cohesive failure. So the bonded assembly is not accepted even if its shear load at failure is high. A better understanding of the interfacial failure is required to adapt the carmakers specifications. The first objective of the PhD thesis was to analyze the critical phenomenon which favor the interfacial failure during single lap test. Substrate rigidity has significant effect on the failure pattern, because it influences the kinematic of deformation of the sample (rotation, steel plasticity, edge effect). Steel plasticity has been identified as a key factor for interfacial failure. The galvanized coating of the steel has a heterogeneous structure, which generate significant heterogeneous strain that could damage the interface. The second objective was to characterize the strength of the substrate-adhesive interface. Two methods have been proposed. The first one enable to measure the strength of an interface which homogeneous loading without edge effect (modified Arcan test). In the second method, the interface capability to resist to edge effects has been assessed. Thus, three different interfaces have been characterized using a three point bending test and thanks to an optical microscopy in situ analysis
Oney, Gozde. "L'ordre des métaux de transition dans la phase spinelle LiNi0,5-xMn1,5+xO4 à haut potentiel : caractérisation multi-échelle jusqu'au nanomètre". Electronic Thesis or Diss., Bordeaux, 2023. http://www.theses.fr/2023BORD0457.
Texto completo da fonteThe performance of spinel LiNi0.5-xMn1.5+xO4 (LNMO) as positive electrode material in Li-ion batteries strongly depend on its synthesis conditions, Ni/Mn stoichiometry, and the degree of ordering of Ni and Mn. LNMO crystal structure can be described in Fd-3m or P4332 space groups, depending on the extent of this ordering. Understanding the impact of these structural properties on electrochemical performance is challenging due to the interdependent nature of each parameter and the limited spatial resolution of the common characterization techniques. In this study, we demonstrate the synthesis of impurity-free disordered (Fd-3m) platelets of LNMO presenting multiple surface orientations via molten salt synthesis. Thanks to the thin platelet morphology (thickness ~180 nm) achieved, we employed a 4D-STEM electron microscopy tool, newly growing in the battery field, to investigate the transition metal ordering on individual LNMO particles with nanometric spatial resolution for the first time. The unique ability to tune the primary particle morphology, spinel composition and control secondary phase generation enabled us to demonstrate that heterogeneity in the transition metal arrangement on the globally ordered (P4332) LNMO is beneficial for electrochemical performance. Combining electron microscopy analysis with average structural properties obtained through X-ray and neutron diffraction, and with information on the local environments obtained using Raman and 7Li NMR spectroscopies, we dissect the “synthesis-composition-properties” relation for LiNi0.5-xMn1.5+xO4 samples prepared through various annealing steps. This enables the obtention of high-performing (dis)ordered spinel LNMOs with diverse compositions, highlighting how the electrochemical properties can be tailored through structural design
Djamai, Zakaria Ilyes. "Contribution à la caractérisation multi-échelle de composites textile mortier à inertie thermique renforcée par des matériaux à changement de phase (composite MCP-TRC) : application au bâtiment". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEE006.
Texto completo da fonteThe building sector has a strong potential for improvement in terms of thermal performance and attenuation of the ecological footprint. A good design of the envelope as well as the structure of the building is fully integrated into these objectives and can contribute effectively to the reduction of energy consumption. This is accompanied by a relevant choice of materials and constructive systems composing the envelope and the structure of the buildingThe research work presented in this thesis is fully integrated in this context and aims at the development of an innovative composite resulting from the association of a modified cementitious matrix by the addition of phase change materials (PCM) and a textile reinforcement, the resulting composite will commonly be called 'MCP-TRC'.A detailed study of the mechanical and thermal behaviour of the 'PCM-TRC' composite was carried out. A particular interest was brought during the work presented to the understanding of the interactions between PCM and cement matrix and between cement matrix modified by the addition of PCM and textile reinforcement. These interactions govern the mechanical and thermal behaviour of PCM-TRC composites.Two innovative concepts (lightweight slabs and PCM-TRC sandwich panels) integrating the PCM-TRC composites were proposed. The mechanical and thermal performances of the two concepts were evaluated. The results obtained are very encouraging and promote the emergence of this type of composites in the building industry
Prill, Torben. "Caractérisation et modélisation de structures carbonées nanoporeuses". Thesis, Paris, ENMP, 2014. http://www.theses.fr/2014ENMP0073/document.
Texto completo da fonteThe aim of the work presented here is to optimize nanoporous carbon materials by means of 'virtual material design'. On this length scale (~ 10nm) Focused Ion Beam – Scanning Electron Microscopy Nanotomography (FIB-SEM) is the only imaging technique providing three dimensional geometric information. Yet, for the optimization, the pore space of the materials must be reconstructed from the resulting image data, which was a generally unsolved problem so far.To overcome this problem, a simulation method for FIB-SEM images was developed. The resulting synthetic FIB-SEM images could then be used to test and validate segmentation algorithms. Using simulated image data, a new algorithm for the morphological segmentation of the highly porous structures from FIB-SEM data was developed, enabling the reconstruction of the three dimensional pore space from FIB-SEM images.Two case studies with nanoporous carbons used for energy storage are presented, using the new techniques for the characterization and optimization of electrodes of Li-ion batteries and electric double layer capacitors (EDLC's), respectively. The reconstructed pore space is modeled geometrically by means of stochastic geometry. Finally, the electrical properties of the materials were simulated using both imaged real and modeled structures
Acosta, Pablo. "Influence des étapes technologiques du procédé Smart CutTM sur l'uniformité d'épaisseur des substrats de SOI : Approche multi-échelle". Phd thesis, Université Paul Sabatier - Toulouse III, 2014. http://tel.archives-ouvertes.fr/tel-01060076.
Texto completo da fonteWassereau, Thibault. "Caractérisation de matériaux composites par problème inverse vibratoire". Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1041/document.
Texto completo da fonteThe increasing use of composite materials in the industry leadsto new challenges in various areas, including non-destructiveevaluation. Common methods such as modal analysis or finiteelements are rarely appropriated to represent the complexvibratory dynamic of composite structures or quantify theirviscoelastic properties, new approaches are then needed.This thesis deals with the development and application of a localinverse vibratory method, called the Force Analysis Technique(FAT), in order to the study multilayer composites. The latterare considered to be homogeneous using the Timoshenko beamtheory, which takes shear effects into account, usually significantfor such structures. A frequency and/or spatial characterizationof the equivalent elastic parameters (Young’s modulus E, shearmodulus G and their associated loss factors) isthen possible to accurately interpret the dynamical behaviourof composite materials and also simplify their implementationin finite element software.A second approach using a corrected finite difference scheme(CFAT method) allows a similar analysis using a coarse mesh,reducing the durations of measurement and post-processing.Finally, a perspective of detection and identification of defects isconsidered. By mean of cartographies of the elastic parameters,it seems possible to infer a signature related to a kind of flaw. Adiscontinuity of the shear modulus would attest the presence ofdelamination while a reduced Young’s modulus could indicate afibre breakage, etc
Glé, Philippe. "Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales - Outils de Caractérisation, Modélisation et Optimisation". Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00923665.
Texto completo da fonteLombaert, Isabelle. "Elaboration et caractérisation des siliciures utilisés comme matériaux de grille ou d'interconnexion dans les circuits VLSI". Bordeaux 1, 1988. http://www.theses.fr/1988BOR10572.
Texto completo da fonteZhu, Yanan. "Conception, synthèse et caractérisation d'un nouveau matériau multi-stimuli-responsive à base de spiropyranne". Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8802.
Texto completo da fontePoulet, Pierre-Alexis. "Effet de la variabilité microstructurale sur le comportement d’un composite UD verre/PA11 : de la caractérisation expérimentale à la modélisation multi-échelle". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM050/document.
Texto completo da fonteIn the field of transport, research for reducing the weight of structures is a continuing preoccupation for the industry. For this reason, polymer matrix composite materials are being used increasingly for structural applications. To succeed with this technological transition numerical modelling plays a significant role as cumbersome and costly experimental campaigns are being limited. This is the background to this thesis work.The material considered is composed of a thermoplastic resin (Polyamide 11) with a unidirectional glass fibre reinforcement. Under mechanical loadings, the microsctructural variability, at the constituent length scale, leads to important multi-axial stresses that need to be evaluated. This is notably true in zones where the matrix is particularly confined. Studying the microscopic scale is of paramount importance in order to understand and simulate specific strain mechanisms of the thermoplastic resin.In the first part, an experimental campaign has been conducted on the plain thermoplastic polymer. Axisymetric notched specimens were tested under uniaxial monotonous tension and monitored with in-situ X-ray synchrotron computed tomography. A cavitation phenomenon has been observed. Not only macroscopic quantities (notch opening displacement, reduction in diameter…) but also microscopic (evolution of voids considered as a cluster or individually) have been analyzed both quantitatively and qualitatively. A finite element model is subsequently proposed and calibrated to take into account the specific strain deformations and damage experimentally observed with this polymer.The second part is dedicated to a numerical study of the unidirectional composite material. A representation of the real microstructure has been tackled with the generation of virtual random and periodic cells in a way that nevertheless is truely morphologically representative. Micromechanics computations have been carried out and give access to strain mechanisms, to local quantities and to the composite material behaviour (in linear elasticity and beyond). Special attention is paid to the representativeness of the computed quantities. Finally, a multiscale approach is proposed. Structural computations have been possible due to a numerical homogenization based on an homogeneous equivalent medium whilst a relocalisation gives access to local quantities in critical zones of the structure
Nguyen, Thanh Loan. "Approche multi-échelles dans les matériaux polymères : de la caractérisation nanométrique aux effets d'échelles". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP1951/document.
Texto completo da fonteThe signature of confinement effect onto the mechanical properties of the amorphous phase during crystallization of two polymers, Polyethylene terephthalate (PET) and poly(lactic acid) (PLA) was investigated at multi-scale. The two polymers have the advantage of being either in bulk amorphous or in semi-crystalline state. The relation between the microstructure and the viscoelastic properties of materials is put light on by the experiments of X-Ray Scattering, differential scanning calorimetry (DSC), by tensile strength tests, by dynamic mechanical analysis (DMA) and by nanoindentation. The difference in molecular structure of PET and PLA is essential for their physical and mechanical behavior. During crystallization, the second amorphous phase whose mechanical behavior is more rigid than conventional amorphous phase was formed. DSC is used to quantify the rigid amorphous fraction dependence on the crystallinity. The technique of X-ray scattering is used to study the evolution of the microstructure (crystallite size, lamella thickness) during crystallization. The mechanical behavior of materials was studied at different scale. DMA tests allow not only to study the macroscopic behavior of viscoelastic polymers but also to quantify the viscoelastic properties of each amorphous phase through their glass transition temperature. This was used as input data in micromechanical models. Nanoindentation is used to measure the mechanical properties of the materials at the extreme surface. In the last part, the homogenization micromechanical modeling was performed based on the matrix - inclusion morphology in order to predict the macroscopic mechanical behavior laws of materials
Guiheneuf, Vincent. "Approche multi-physique du vieillissement des matériaux pour application photovoltaïque". Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1091/document.
Texto completo da fonteThis thesis investigates the aging of photovoltaic (PV) modules based on crystalline silicon technology via a multi-material approach. The first objective is to determine the degradation mechanisms involved during the operation of the PV modules and thus to be able to propose technological solutions improving their durability. For this purpose, accelerated aging tests were carried out on the glass, the crystalline silicon PV cell and the PV mini-module composed of glass, a polymeric encapsulant and the silicon cell.Their functional properties are systematically evaluated and the follow-up of these indicators allows to define aging laws. In parallel, physicochemical characterizations are carried out to determine the degradation mechanisms of the different components of the module. The study of damp heat on glass throws into evidence a surface degradation with a hydration process of the silica network and a leaching phenomenon of the sodium which involves an increase of the glass transmittance. The PV cell exhibits a deterioration of the electrical performance and reflectance after UV radiation exposure due to a photo-oxidation process of the SiNx antireflection layer. It has also been established that high UV power can also promote a regeneration phenomenon of electrical performances. The aging of the mini-module under UV shows the phenomenon of photo-induced degradation (LID) generating a slight decrease in the electrical performance from the first exposure whereas the impact of damp heat on the electrical performance is null after 2000 hours
Ponomareva, Svetlana. "Développement et caractérisation avancée de matériaux magnétiques durs de haute performance". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY035/document.
Texto completo da fonteNowadays in medicine and biotechnology a wide range of applications involves magnetic micro/nano-object manipulation including remote control of magnetic beads, trapping of drug vectors, magnetic separation of labelled cells and so on. Handling and positioning magnetic particles and elements functionalized with these particles has greatly benefited from advances in microfabrication. Indeed reduction in size of the magnet while maintaining its field strength increases the field gradient. In this context, arrays made of permanent micromagnets are good candidates for magnetic handling devices. They are autonomous, suitable for integration into complex systems and their magnetic action is restricted to the region of interest.In this thesis we have elaborated an original approach based on AFM and MFM for quantitative study of the magnetic force and associated force gradients induced by TMP micromagnet array on an individual magnetic micro/nano-object. For this purpose, we have fabricated smart MFM probes where a single magnetic (sub)micronic sphere was fixed at the tip apex of a non-magnetic probe thanks to a dual beam FIB/SEM machine equipped with a micromanipulator.Scanning Force Microscopy conducted with such probes, the so-called Magnetic Particle Scanning Force Microscopy (MPSFM) was employed for 3D mapping of TMP micromagnets. This procedure involves two main aspects: (i) the quantification of magnetic interaction between micromagnet array and attached microsphere according to the distance between them and (ii) the complementary information about micromagnet array structure. The main advantage of MPSFM is the use of a probe with known magnetization and magnetic volume that in combination with modelling allows interpreting the results ably.We conducted MPSFM on TMP sample with two types of microparticle probes: with superparamagnetic and NdFeB microspheres. The measurements carried out with superparamagnetic microsphere probes reveal attractive forces (up to few tens of nN) while MFM maps obtained with NdFeB microsphere probes reveal attractive and repulsive forces (up to one hundred of nN) for which the nature of interaction is defined by superposition of microsphere and micromagnet array magnetizations. The derived force and its gradient from MFM measurements are in agreement with experiments on microparticle trapping confirming that the strongest magnetic interaction is observed above the TMP sample interfaces, between the areas with opposite magnetization. Thanks to 3D MFM maps, we demonstrated that intensity of magnetic signal decays fast with the distance and depends on micromagnet array and microsphere properties.Besides the magnetic interaction quantification, we obtained new information relevant to TMP sample structure: we observed and quantified the local magnetic roughness and associated fluctuations, in particular in zones of reversed magnetization. The variation of detected signal can reach the same order of magnitude as the signal above the micromagnet interfaces. These results complete the experiments on particle trapping explaining why magnetic microparticles are captured not only above the interfaces, but also inside the zones of reversed magnetization.Quantitative measurements of the force acting on a single (sub)microsphere associated to the modelling approach improve the understanding of processes involved in handling of magnetic objects in microfluidic devices. This could be employed to optimize the parameters of sorting devices and to define the quantity of magnetic nanoparticles required for labelling of biological cells according to their size. More generally these experimental and modelling approaches of magnetic interaction can meet a high interest in all sorts of applications where a well-known and controlled non-contact interaction is required at micro and nano-scale
Rey, Pierre-André. "Caractérisation et optimisation du perçage orbital du Ti6Al4V et d'empilages CFRP/Ti6Al4V". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30113/document.
Texto completo da fonteThe study presented in this thesis deals with the orbital drilling of Ti6Al4V titanium alloy and CFRP carbon fiber composite. This case study is taken from an industrial problem, from the Airbus company wishing to incorporate parts CFRP to reduce its mass. But the combination of these two materials with antagonistic properties poses many problems for drilling. This is why new alternatives to conventional drilling have been sought. Among these alternatives, orbital drilling with micro-lubrication showed interesting prospects. That is why it was chosen in this industrial application. But this process is still relatively unexplored and there is little feedback and many developments to achieve. Orbital drilling process is very different from the conventional axial bore. The bore is machined with a smaller diameter tool than the hole, which describes a helical path in the material. All work presented focus on the characterization for the optimization of the orbital drilling process. To achieve this, several aspects were discussed. First, a geometric modeling and kinematics of operation has been developed. The inclusion of the exact geometry of the tool and cutting conditions helped to define the geometry of the chip at every moment. This knowledge is important for understanding the achieved material removal mechanism, it allows to estimate the loading of the tool and the conditions in which machining is performed. From this first geometric modeling, modeling of cutting forces was established. For this, a model of mechanistic type of effort was used. Its application was adapted to orbital drilling in order to best represent the operation. The thus modeled efforts were compared to those observed experimentally in order to validate the proposed model. This allowed to consider the use of this model for a better understanding of this material removal process. The influence of model inputs, namely the cutting conditions and tool geometry was studied. Another contribution of this work is the characterization of the orbital drilling of CFRP stacks / Ti6Al4V. Indeed, many tests were developed to characterize the orbital drilling process. Experimental procedures have therefore been put in place. First of all, the instrumented test means had to be characterized so that it better corresponds to the means used by the manufacturer and above all it allows to carry out reliable and repeatable testing. The experimental design implemented subsequently helped to define the influence of cutting parameters on the efforts and realized diameters. In this phase of characterization, the bore in errors have also been studied. Thus, the trends have been observed. The results obtained in this work in the meeting helped to consider the process optimization of routes, through the control of advances, the drilling strategy, but also the geometry of the tool. Tracks have been proposed and are subject to further study. modeling implementation and the identification of phenomena occurring during the operation have also laid the foundation for process monitoring. This can be considered passively, to monitor the smooth running of the operation, but also actively to act in real time to the control of the process, based on identified phenomena, to ensure the desired quality
Mrazkova, Zuzana. "Modélisation et caractérisation de matériaux et nanostructures pour les applications photovoltaïques". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX121/document.
Texto completo da fonteResearch in photovoltaics aims at lowering the price per watt of generated electrical power. Substantial efforts aim at searching for new materials and designs which can push the limits of existing solar cells. The recent development of complex materials and nanostructures for solar cells requires more effort to be put into their characterization and modeling. This thesis focuses on optical characterization, modeling, and design optimization of advanced solar cell architectures.Optical measurements are used for fast and non-destructive characterization of textured samples for photovoltaic applications. Surface textures enhance light-trapping and are thus desired to improve the solar cell performance. On the other hand, these textures make optical characterization more challenging and more effort is required for both, the optical measurement itself and subsequent modeling and interpretation of obtained data. In this work, we demonstrate that we are able to use optical methods to study the widely used pyramidal textures as well as very challenging randomly oriented silicon nanowire arrays.At first, we focused on the optical study of various pyramidal surfaces and their impact on the silicon heterojunction solar cell performance. We have found that vertex angles of pyramids prepared using various texturing conditions vary from the theoretical value of 70.52° expected from crystalline silicon. This change of the vertex angle is explained by regular monoatomic terraces, which are present on pyramid facets and are observed by atomic resolution transmission electron microscopy. The impact of a vertex angle variation on the thicknesses of deposited thin films is studied and the consequences for resulting solar cell efficiency are discussed. A developed optical model for calculation of the reflectance and absorptance of thin film multi-layers on pyramidal surfaces enabled a solar cell design optimization, with respect to a given pyramid vertex angle.In-situ Mueller matrix ellipsometry has been applied for monitoring the silicon nanowire growth process by plasma-enhanced vapor-liquid-solid method. We have developed an easy-to-use optical model, which is to our knowledge a first model fitting the experimental ellipsometric data for process control of plasma-assisted vapor-liquid-solid grown nanowires. The observed linear dependence of the silicon material deposition on the deposition time enables us to trace the fabrication process in-situ and to control material quality
Bigaud, David. "Description géométrique pour la caractérisation mécanique multi-échelles de matériaux composites à renforts textiles 2D et 3D". Lyon 1, 1997. http://www.theses.fr/1997LYO10223.
Texto completo da fonteNtenga, Richard. "Modélisation multi-échelles et caractérisation de l'anisotropie élastique de fibres végétales pour le renforcement de matériaux composites". Clermont-Ferrand 2, 2007. http://www.theses.fr/2007CLF21759.
Texto completo da fonteRojo, Amandine. "Etude de la structuration et du comportement de matériaux à base de gypse sous condition incendie". Phd thesis, INSA de Rennes, 2013. http://tel.archives-ouvertes.fr/tel-00880650.
Texto completo da fonteAlfonso, Medina Hugo Leonardo. "Caractérisation et modélisation des assemblages multi-matériaux sous sollicitations mixtes quasi-statiques pour la conception des structures automobiles". Thesis, Brest, 2016. http://www.theses.fr/2016BRES0118/document.
Texto completo da fonteNowadays, the emissions of CO2 due to the use of automobiles have reached critical levels causing global warming and health problems. In order to reduce these emissions, the French automotive industry has decided to reduce the car weight by means of the use of lighter materials such as composite materials. However, the classical joining techniques are not adapted to assembly these new materials to the structure of the car (aluminum and steel alloys). Therefore, the characterization and modeling of new joining techniques of dissimilar materials is a problem that has been treated in the current study.Four different joining techniques of dissimilar materials (metal/composite) have been studied: (i) stud bonding, (ii) laser welding, (iii) self-pierce riveting and (iv) adhesive bonding systems. Traditional lap-shear and cross-tension tests were used to characterize the first two joining techniques. Then, a new characterization test based on a modified Arcan device has been proposed to analyze the behavior of self-piercing rivet and adhesive bonding systems. Among all the four tested techniques, adhesive joints have been selected as the most adapted technique according to the requirements of the industry. Therefore, modified Arcan tests have been performed in order to determine the behavior of the adhesives of the study (Betamate1822 and Sikapower498). These tests were then used to propose and identify a new 3D non-linear viscoelastic spectral model. The identification procedure of the material parameters is only based on three multilevel creep tests, which permits the rapid dimensioning of adhesively bonded structures. Finally, the proposed behavior law was validated by the good concordance between the numerical predictions and the experimental curves of monotonic tests at different loading rates and increasing cyclic tests.The current study was developed in the framework of an automotive project. Nevertheless, the conclusions and prospects of the study can be extrapolated to other interesting fields
Mailhe, Clément. "Etablissement du diagramme de phases de systèmes de matériaux par thermographie infrarouge". Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0073.
Texto completo da fonteExperimental and numerical techniques for the study of phase change are numerous. The diversity of existing method can be explained by the variety of properties of interest associated to phase change. Amongst them, some techniques aim at establishing the phase diagrams of systems of materials and all present the common characteristic of being time-consuming. In the frame of the study and development of new materials, they appear rather unadapted to the requirements of the industry. A method based on infrared thermography has been developed in order to overcome this limit of standard techniques. It allows for the establishment of phase diagrams in a less than two hours experiment. The proof of the validity of this concept was made on organic systems presenting simple phase diagrams. In this work, its applicability for the determination of phase diagrams of increasing complexity is evaluated. For its optimization, studies are performed in order to assess the influence experimental parameters on the efficiency and quality of results of the method. Finally, its potential applications and limits are investigated
El, Mouridi Mohammed. "Caractérisation mécanique de la loupe de thuya (Tetraclinis Articulata (Vahl) Masters) en vue de sa valorisation". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2011. http://tel.archives-ouvertes.fr/tel-00805175.
Texto completo da fonteFrénet, Dominique. "Application de la technologie multi-éléments à la caractérisation des matériaux par ondes acoustiques de surface en régime impulsionnel". Valenciennes, 1999. https://ged.uphf.fr/nuxeo/site/esupversions/d47c424f-ed1b-4d29-b812-8e210d593fff.
Texto completo da fontePuech, Sylvain. "Élaboration, caractérisation structurale et mise en forme d'alliages de magnésium vitreux". Grenoble INPG, 2008. http://www.theses.fr/2008INPG0033.
Texto completo da fonteThe amorphous structure of metallic glasses results in high mechanical properties at room temperature, high hardness and strength, large elastic deformation domain, but also interesting forming capacity in their supercooled liquid region. Because of their out of equilibrium state, a crystallisation can develop during a heat treatment and lead to the formation of a glass/crystallites composite, for which properties are changed. We investigate in this thesis the Mg based bulk metallic glasses family, mainly in the Mg-Cu-RE system (RE = Rare Earth): from their elaboration by copper mold injection casting, through their structural characterisation, by DSC, X-ray diffraction and microscopy, their mechanical characterisation, mainly by compression, in amorphous and partially crystallised states, to their forming by extrusion. Samples are obtained in the form of amorphous rods up to 9mm diameter. At room temperature, despite a macroscopic brittle behaviour, fracture stresses higher than 800MPa can be measured. In the vicinity of the glass transition temperature, at about 150°C, a great forming capacity is highlighted, associated to Newtonian flows and low viscosities. The crystallisation mainly deteriorates the mechanical properties of the glass, especially by a weakening at room temperature and by the progressive degradation of forming capacities at high temperatures. Nevertheless, the high thermal stability of the glass is sufficient to keep the amorphous state during the forming operations, allowing the elaboration of multi-materials metallic glass/light alloy
Rodiet, Christophe. "Mesure de Température par Méthodes Multi-Spectrales et Caractérisation Thermique de Matériaux Anisotropes par Transformations Intégrales : « Aspects Théoriques et Expérimentaux »". Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0283/document.
Texto completo da fonteThis thesis consists of two relatively independent parts, the first part focuses on methods of temperature measurement using Multi-Spectral (passive optical pyrometry) methods, and the second on the Thermal Characterization by integral transforms at high temperature of orthotropic materials. In each of these two parts, methods / models developed were treated from a theoretical point of view, numerical and experimental. In the multi-spectral part, a method of temperature measurement to take into account a spectral variation of the overall measurement chain (including the emissivity) was introduced. Moreover, a method of determining the optimal wavelengths in the sense of minimizing the standard deviation of temperature, has been developed. Finally, it has also been shown that the optimal wavelengths for mono-spectral and bi-spectral measurements could be determined with similar laws to Wien's displacement law. In the Thermal Characterization part, different methods and models have been developed. The proposed methods perform the estimation of longitudinal and transverse diffusivities on all harmonics simultaneously. Furthermore, they allow overcoming the thermal coupling due to the presence of a sample holder, and / or making pseudo-local measurements of diffusivities. Finally, the concepts of correlation between parameters and duration of harmonics exploitability were also discussed.This thesis consists of two relatively independent parts, the first part focuses on methods of temperature measurement using Multi-Spectral (passive optical pyrometry) methods, and the second on the Thermal Characterization by integral transforms at high temperature of orthotropic materials. In each of these two parts, methods / models developed were treated from a theoretical point of view, numerical and experimental. In the multi-spectral part, a method of temperature measurement to take into account a spectral variation of the overall measurement chain (including the emissivity) was introduced. Moreover, a method of determining the optimal wavelengths in the sense of minimizing the standard deviation of temperature, has been developed. Finally, it has also been shown that the optimal wavelengths for mono-spectral and bi-spectral measurements could be determined with similar laws to Wien's displacement law. In the Thermal Characterization part, different methods and models have been developed. The proposed methods perform the estimation of longitudinal and transverse diffusivities on all harmonics simultaneously. Furthermore, they allow overcoming the thermal coupling due to the presence of a sample holder, and / or making pseudo-local measurements of diffusivities. Finally, the concepts of correlation between parameters and duration of harmonics exploitability were also discussed
Laribi, Mohamed Amine. "Caractérisation et Modélisation du comportement micromécanique des matériaux composites SMC sous chargement thermomécanique de type quasi-statique et fatigue". Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0062/document.
Texto completo da fonteThe composite materials are strongly conditioned by the ability of the company to design the automotive structures under various complexes loadings such as fatigue. The aim of this thesis is to develop a multi-scale modeling coupled to a phenomenological approach in order to provide a response to the dimensioning need of structural parts subjected to cyclic loading at different temperatures of 23°C, 80°C and -30°C. By this way, the work was conducted along two main lines; firstly, an experimental investigation under monotonic and fatigue loadings. The results of this experimental study provide the necessary data for the construction of a micromechanical model which constitute the basis of the second part of this work; the predictive approaches of the fatigue lifetime for SMC composite. Thus, two hybrid, phenomenological/micromechanical, modeling approaches have been proposed. Both are based on a micromechanical modeling that allows describing the mechanical behavior of our material under monotonic loading, taking into account the microstructure and the damage phenomenon. These two predictive models require only a limited number of experimental tests and investigations but remain very reliable in their capacity to predict the lifetime of an SMC composite material under fatigue loading. The approach is validated in the case of thermomechanical sequential loadings at variable temperatures or amplitudes
Giljean, Sylvain. "Caractérisation Multi-Échelles de la Rugosité de Matériaux Métalliques à Usage Biomédical : Effet sur la Mouillabilité et l'Adhésion de Cellules Osseuses". Mulhouse, 2007. http://www.theses.fr/2007MULH0888.
Texto completo da fonteThis work aims to characterize the topography of metallic biomaterials (stainless steel, pure titanium and titanium alloy) by using a tactile profilometer and powerful mathematical treatments. The samples topography is obtained either by grinding with different paper grades or by electroerosion. The roughness effect on wettability, evaluated by goniometry, and the roughness effect on human bone cell behaviour, determined by image analyses, is statistically evaluated by calculating the relevance of 101 roughness parameters at different scales from 0. 2 m to 5 mm. The major conclusion is that the evaluation of the rouglmess by the Ra parameter at only one scale, arbitrarily chosen, is insufficient to understand the roughness effect. Roughness must be defined by amplitude, frequency, hybrid and fractal parameters and the evaluation length must be adapted to the size of the studied element
El, Hachem Chady. "Etude expérimentale et modélisation multi-échelles du comportement hygro-mécanique des matériaux de construction : cas du bois". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN051.
Texto completo da fonteHealthy living is a main contemporary concern of the construction field, extended to the environment. It has significant concerns about health, energy consumption, environmental impact and sustainability of building materials. The preliminary selection of materials used for construction plays an important role in the success of high environmental quality projects. In this context, it remains essential to predict the temperature and humidity fields inside porous building materials, where bio-based materials are subject to a strong interest due to their environmental qualities.As bio-based materials are hygroscopic, they tend to absorb or restore moisture, which respectively generates swelling or shrinkage. At the microscopic scale, moisture takes place either by absorption of bound water by the fibers, or by the existence of free water in the pores. The complexity of microscopic phenomena in bio-based materials will lead to strong interactions between the mechanical aspect on one side and heat and mass transfers’ aspects on the other side. The existence of this coupling may significantly alter the building's thermal performance, as well as its durability.The objective of this thesis work is to study the microscopic hygric behavior of porous building materials. The mechanical aspect coupled to the hygric one is studied, taking into consideration the local swelling and shrinkage strains, and their impact on the hysteresis phenomenon. Understanding this coupling is very important in order to improve the quality of habitat and evaluate the durability of these structures.The PhD project consists on working on all aspects, modeling, characterization and measurement of hygric transfers. Quantification of these phenomena is achieved through experimental campaigns based on 3D imaging techniques (X-ray micro-tomography). The use of X-ray diffraction (XRD), digital volume correlation, as well as nuclear magnetic resonance (NMR) allows a better understanding of the interactions between the solid matrix and bound and/or free water. The corresponding results have led to a microscopic morphological characterization of spruce wood, as well as to a better estimation of the various dimensional variations of the cell walls, and their chemical components.The numerical results achieved on the real 3D structure of the material have been coupled to the experimental ones, using digital volume correlation technique (X-ray tomography), in order to identify the intrinsic properties of the material.These thesis works provide a scientific basis allowing the improvement of modeling of the mechanical coupling with heat and mass transfers in bio-based materials
Djebbi, Roua. "Contribution à la réalisation par technologies additives hybrides de composants microondes 3D multi-matériaux". Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0110.
Texto completo da fonteThis thesis focuses on improving the performance of 3D multi-material microwave components produced through hybrid additive manufacturing technologies, utilizing sintering techniques to optimize the electrical conductivity of printed metallic tracks, and the study of various high-frequency (HF) characterization methods to assess these conductors. The bibliographic study led to the selection of direct printing technologies such as aerosol jet printing (AJP) and material micro-extrusion (nScrypt) for metallic layers, as well as 3D printing of PEKK polymer. One of the main contributions of this work lies in the integration of in situ sintering techniques, such as laser sintering, directly integrated into the nScrypt machine, allowing for the sintering of metallic deposits immediately after printing to maximize their conductive properties. Ohmic sintering was also explored as a complementary method, particularly for metal lines printed via micro-extrusion, with promising results for significantly improving conductivity. In parallel, innovative methods for HF conductivity characterization were developed. These approaches rely on specific probes enabling both contactless and direct contact characterizations, allowing for the measurement of HF conductivity over small areas and the mapping of the conductivity of printed metallic surfaces while accounting for surface roughness. This work is part of a broader goal to integrate these innovations into a hybrid additive manufacturing system, thereby optimizing the performance of 3D microwave components (transmission lines, resonators, etc.)
Cochereau, Thibaud. "Structure et Mécanique du pli vocal humain : caractérisation et modélisation multi-échelles". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI018/document.
Texto completo da fonteThe human vocal fold owns exceptional vibratory properties. It is capable of withstanding large deformations, for different types of loading, in a repeated and reversible manner. These particular vibro-mechanical properties are closely linked to its microstructure: a multi-layer complex structure composed of highly heterogeneous protein fibre networks. However, it is still difficult today to describe precisely the implication of the microstructural specificities of the fold in its biomechanical behaviour.In order to clarify this link and to move towards a better understanding of the behaviour of the vocal tissue, this study proposes to approach the problem under three complementary approaches, combining microstructural characterization, mechanical characterization and numerical modelling. First, the microstructure of the fold was studied emph{ex vivo} using an original technique based on X-ray tomography. The use of synchrotron tomography in phase retrieval mode has revealed the structure of the tissue at different scales. In particular, high-resolution 3D images of the fibrous structure of the upper and muscular layers of the tissue were acquired. These images gave rise to a quantitative 3D analysis of the fibrous arrangement, allowing the determination of descriptors of orientation and 3D geometry of the fibers.In a second step, the mechanical behaviour of the fabric under different loading conditions was studied. A protocol has been proposed to characterize the same sample in tension, compression and shear. These tests have complemented existing knowledge on fold biomechanics, and constitute important reference data for the construction and validation of digital models.Finally, based on the data acquired experimentally, a micro-mechanical model was developed. This model has the specificity to take into account the 3D arrangement of the tissue through an idealized but relevant representation of its fibrous microstructure. The macroscopic responses predicted for different loading conditionds could be compared to the experiment for validation. At the microscopic scale, the kinematics of the fibres during the loading could be simulated. The micromechanisms that occur during the deformation of the fibrous network could thus be identified, opening new perspectives in the understanding of the multi-scale properties of the tissue
Toumi, Souad. "Caractérisation des matériaux complexes et de leurs endommagements par la technique de la coda ultrasonore alliée à l'acoustique non linéaire". Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1024/document.
Texto completo da fonteNonlinear Resonance (NR) and Coda Wave Interferometry (CWI) have proved to be efficient to detect and follow the evolution of micro-cracks within a strongly scattering media (concrete, rocks, etc.). Nevertheless, the localization of the cracks using the same techniques is not straight forward. In order to avoid the conditioning and its subsequent relaxation effect related to NR, CWI is simultaneously applied when concrete samples are vibrating in the linear regime. Based on a comparative study of the coda signals contents (non ballistic part) in the absence and under the weak linear vibration, the localization of the mechanically induced scatterers was possible depending on the scatterers' main direction with respect to the vibration plane. The latter point raises the issue of the generated types of vibration at the scatterers. Therefore, investigations were performed using the Acoustic Emission (AE) technique, which has served to verify that the acoustic activity during the linear vibrations does change depending on the considered experimental configuration. The latter, has also a direct effect on the frequency content of the recorded AE hits showing the potential link existing between the quantitative analysis of AE hits and the generated vibration mechanisms of the existing micro-cracks
Benyahia, Kheira. "Hybrid voxels 4D printing based on topologically interlocked multi-material assembly". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCA026.
Texto completo da fonteL'impression 4D est considérée comme une technologie de fabrication prometteuse pour créer des dispositifs innovants capables d'évoluer dans leur environnement d'utilisation. En couplant les processus de fabrication additive (FA) avec des matériaux actifs/passifs, les objets peuvent changer de propriétés, de formes ou même de fonctionnalités sous l'effet d'une énergie de stimulation. Pour réaliser un changement de forme souhaité, les récents progrès en conception informatique autour des matériaux numériques nécessitent de s'attaquer à l'impression 4D multi-matériaux. Cependant, la déposition de matériaux actifs et passifs en une seule structure reste difficile en raison de la compatibilité limitée des imprimantes existantes avec les matériaux intelligents possédant les propriétés nécessaires. Pour surmonter cette limitation dans le contexte de la distribution de matériaux complexe, une approche originale consiste à aborder l'impression 4D multi-matériaux du point de vue de l'assemblage de blocs imbriqués. Ces types d'assemblages ont parcouru un long chemin d'évolution et ont suscité diverses applications. Ils ont été étudiés comme une solution aux défis d'assemblage des pièces grandes et complexes. Par conséquent, l'objectif principal de cette thèse est de proposer une approche de conception informatique qui transforme un objet 4D multi-matériaux avec une distribution de matériaux numériques calculée en blocs imbriqués appropriés. Ces derniers peuvent être imprimés séparément en utilisant la FA à matériau unique, puis assemblés pour atteindre le changement de forme ciblé. Cette thèse se déroulera en trois contributions majeures. Tout d'abord, une contribution couvrira la séquence des étapes utilisées pour développer l'algorithme de génération d'assemblage imbriqué. Ensuite, une autre contribution proposée approfondira l'approche de l'assemblage de blocs imbriqués en étudiant leur effet sur le comportement des structures imprimées en 4D multi-matériaux. L'étude en question comparera les structures imprimées en une seule opération à celles qui sont imbriquées. Des tests mécaniques/de stimulation et des simulations numériques seront effectués pour démontrer que les structures imbriquées présentent des performances mécaniques pertinentes tout en améliorant la réponse à l'activation par rapport aux structures multi-matériaux imprimées en une seule fois. Une contribution finale sera consacrée à la généralisation de l'applicabilité de l'approche d'assemblage de blocs imbriqués en améliorant l'uniformité des changements de forme/de propriété dans une structure 4D multi-matériaux assemblée. De plus, cette contribution vise également à résoudre les limitations qui peuvent survenir en raison des interfaces des blocs imbriqués, telles que le manque continuité du contact et de déformation. Ainsi, il s'agira de proposer un concept de blocs imbriqués personnalisés prenant en compte les matériaux actifs et leurs transformations potentielles. Pour souligner leur pertinence et leur utilisation pratique, des cas d’études seront inclus en parallèle des contributions proposées