Artigos de revistas sobre o tema "Capture de CO₂"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Capture de CO₂".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Green, N. S., C. E. Early, L. K. Beard e K. T. Wilkins. "Multiple captures of fulvous harvest mice (Reithrodontomys fulvescens) and northern pygmy mice (Baiomys taylori): evidence for short-term co-traveling". Canadian Journal of Zoology 90, n.º 3 (março de 2012): 313–19. http://dx.doi.org/10.1139/z11-137.
Texto completo da fonteAresta, Michele, Angela Dibenedetto e Antonella Angelini. "The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, n.º 1996 (13 de agosto de 2013): 20120111. http://dx.doi.org/10.1098/rsta.2012.0111.
Texto completo da fonteRoussanaly, Simon, e Rahul Anantharaman. "Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources". Chemical Engineering Journal 327 (novembro de 2017): 618–28. http://dx.doi.org/10.1016/j.cej.2017.06.082.
Texto completo da fonteSaragih, Harriman Samuel, Togar Simatupang e Yos Sunitiyoso. "From co-discovery to co-capture: co-innovation in themusic business". International Journal of Innovation Science 11, n.º 4 (29 de novembro de 2019): 600–617. http://dx.doi.org/10.1108/ijis-07-2019-0068.
Texto completo da fonteLeverick, Graham, e Betar M. Gallant. "Electrochemical Reduction of Amine-Captured CO2 in Aqueous Solutions". ECS Meeting Abstracts MA2023-01, n.º 26 (28 de agosto de 2023): 1719. http://dx.doi.org/10.1149/ma2023-01261719mtgabs.
Texto completo da fonteRamanan, G., e Gordon R. Freeman. "Electron thermalization distance distribution in liquid carbon monoxide: electron capture". Canadian Journal of Chemistry 66, n.º 5 (1 de maio de 1988): 1304–12. http://dx.doi.org/10.1139/v88-212.
Texto completo da fonteWang, Tao, Kun Ge, Jun Liu e Meng Xiang Fang. "A Thermodynamic Analysis of the Fuel Synthesis System with CO2 Direct Captured from Atmosphere". Advanced Materials Research 960-961 (junho de 2014): 308–15. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.308.
Texto completo da fonteChan, Hao Xian Malcolm, Eng Hwa Yap e Jee Hou Ho. "Overview of Axial Compression Technology for Direct Capture of CO2". Advanced Materials Research 744 (agosto de 2013): 392–95. http://dx.doi.org/10.4028/www.scientific.net/amr.744.392.
Texto completo da fonteDeng, Liyuan, e Hanne Kvamsdal. "CO 2 capture: Challenges and opportunities". Green Energy & Environment 1, n.º 3 (outubro de 2016): 179. http://dx.doi.org/10.1016/j.gee.2016.12.002.
Texto completo da fonteReis Machado, Ana S., e Manuel Nunes da Ponte. "CO 2 capture and electrochemical conversion". Current Opinion in Green and Sustainable Chemistry 11 (junho de 2018): 86–90. http://dx.doi.org/10.1016/j.cogsc.2018.05.009.
Texto completo da fonteTuğrul Erdem, R. "Innovative technologies in the cement industry". Cement Wapno Beton 26, n.º 5 (2021): 444–51. http://dx.doi.org/10.32047/cwb.2021.26.5.7.
Texto completo da fonteGomez-Garcia, J. Francisco, e Heriberto Pfeiffer. "Structural and CO2capture analyses of the Li1+xFeO2(0 ≤ x ≤ 0.3) system: effect of different physicochemical conditions". RSC Advances 6, n.º 113 (2016): 112040–49. http://dx.doi.org/10.1039/c6ra23329e.
Texto completo da fonteKothandaraman, Jotheeswari, Alain Goeppert, Miklos Czaun, George A. Olah e G. K. Surya Prakash. "CO2capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts". Green Chemistry 18, n.º 21 (2016): 5831–38. http://dx.doi.org/10.1039/c6gc01165a.
Texto completo da fonteXiao, Yurou Celine, Christine M. Gabardo, Shijie Liu, Geonhui Lee, Yong Zhao, Colin P. O'Brien, Rui Kai Miao et al. "Integrated Capture and Electrochemical Conversion of CO2 into CO". ECS Meeting Abstracts MA2023-02, n.º 47 (22 de dezembro de 2023): 2390. http://dx.doi.org/10.1149/ma2023-02472390mtgabs.
Texto completo da fonteAri, Betul, Erk Inger, Aydin K. Sunol e Nurettin Sahiner. "Optimized Porous Carbon Particles from Sucrose and Their Polyethyleneimine Modifications for Enhanced CO2 Capture". Journal of Composites Science 8, n.º 9 (27 de agosto de 2024): 338. http://dx.doi.org/10.3390/jcs8090338.
Texto completo da fonteHarwood, Gyan, e Leticia Avilés. "Differences in group size and the extent of individual participation in group hunting may contribute to differential prey-size use among social spiders". Biology Letters 9, n.º 6 (23 de dezembro de 2013): 20130621. http://dx.doi.org/10.1098/rsbl.2013.0621.
Texto completo da fonteWei, Duo, Henrik Junge e Matthias Beller. "An amino acid based system for CO2 capture and catalytic utilization to produce formates". Chemical Science 12, n.º 17 (2021): 6020–24. http://dx.doi.org/10.1039/d1sc00467k.
Texto completo da fonteKothandaraman, Jotheeswari, e David J. Heldebrant. "Towards environmentally benign capture and conversion: heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents". Green Chemistry 22, n.º 3 (2020): 828–34. http://dx.doi.org/10.1039/c9gc03449h.
Texto completo da fonteStolaroff, Joshuah K., Congwang Ye, James S. Oakdale, Sarah E. Baker, William L. Smith, Du T. Nguyen, Christopher M. Spadaccini e Roger D. Aines. "Microencapsulation of advanced solvents for carbon capture". Faraday Discussions 192 (2016): 271–81. http://dx.doi.org/10.1039/c6fd00049e.
Texto completo da fonteDowson, G. R. M., I. Dimitriou, R. E. Owen, D. G. Reed, R. W. K. Allen e P. Styring. "Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents". Faraday Discussions 183 (2015): 47–65. http://dx.doi.org/10.1039/c5fd00049a.
Texto completo da fonteBains, Praveen, Peter Psarras e Jennifer Wilcox. "CO 2 capture from the industry sector". Progress in Energy and Combustion Science 63 (novembro de 2017): 146–72. http://dx.doi.org/10.1016/j.pecs.2017.07.001.
Texto completo da fonteKnowles, Gregory P., Zhijian Liang e Alan L. Chaffee. "Shaped polyethyleneimine sorbents for CO 2 capture". Microporous and Mesoporous Materials 238 (janeiro de 2017): 14–18. http://dx.doi.org/10.1016/j.micromeso.2016.03.019.
Texto completo da fonteTanner, John. "CO2 air-capture costs". Physics Today 76, n.º 2 (1 de fevereiro de 2023): 12. http://dx.doi.org/10.1063/pt.3.5170.
Texto completo da fonteDu, Yang, Ye Yuan e Gary T. Rochelle. "Volatility of amines for CO 2 capture". International Journal of Greenhouse Gas Control 58 (março de 2017): 1–9. http://dx.doi.org/10.1016/j.ijggc.2017.01.001.
Texto completo da fonteBelgamwar, Rajesh, Ayan Maity, Tisita Das, Sudip Chakraborty, Chathakudath P. Vinod e Vivek Polshettiwar. "Lithium silicate nanosheets with excellent capture capacity and kinetics with unprecedented stability for high-temperature CO2 capture". Chemical Science 12, n.º 13 (2021): 4825–35. http://dx.doi.org/10.1039/d0sc06843h.
Texto completo da fonteWang, Xueyuan, Ting He, Junhua Hu e Min Liu. "The progress of nanomaterials for carbon dioxide capture via the adsorption process". Environmental Science: Nano 8, n.º 4 (2021): 890–912. http://dx.doi.org/10.1039/d0en01140a.
Texto completo da fonteSafina, O. R., R. V. Bikbulatov, A. R. Khusnutdinov e A. A. Charki. "CO₂ CAPTURE FROM FLUE GASES OF GAS TURBINE POWER PLANTS". Petroleum Engineering 22, n.º 4 (3 de setembro de 2024): 181–89. http://dx.doi.org/10.17122/ngdelo-2024-4-181-189.
Texto completo da fonteMorsi, Badie, Bingyun Li, Husain Ashkanani e Rui Wang. "TEA of a Unique Two-Pathways Process for Post-Combustion CO2 Capture". Journal of Energy and Power Technology 04, n.º 04 (13 de outubro de 2022): 1–25. http://dx.doi.org/10.21926/jept.2204033.
Texto completo da fonteJacobson, Mark Z. "The health and climate impacts of carbon capture and direct air capture". Energy & Environmental Science 12, n.º 12 (2019): 3567–74. http://dx.doi.org/10.1039/c9ee02709b.
Texto completo da fonteZhang, Zhien, Tohid Borhani, Muftah El-Naas, Salman Soltani e Yunfei Yan. "Gas Capture Processes". Processes 8, n.º 1 (4 de janeiro de 2020): 70. http://dx.doi.org/10.3390/pr8010070.
Texto completo da fonteAnantharaman, Rahul, Thijs Peters, Wen Xing, Marie-Laure Fontaine e Rune Bredesen. "Dual phase high-temperature membranes for CO2 separation – performance assessment in post- and pre-combustion processes". Faraday Discussions 192 (2016): 251–69. http://dx.doi.org/10.1039/c6fd00038j.
Texto completo da fonteBhattacharyya, Debangsu, e David C. Miller. "Post-combustion CO 2 capture technologies — a review of processes for solvent-based and sorbent-based CO 2 capture". Current Opinion in Chemical Engineering 17 (agosto de 2017): 78–92. http://dx.doi.org/10.1016/j.coche.2017.06.005.
Texto completo da fonteHamed, Ali Mahmoud, Tengku Nordayana Akma Tuan Kamaruddin, Nabilah Ramli e Mohd Firdaus Abdul Wahab. "Design and simulate an amine-based CO2 capture process for a steam methane reforming hydrogen production plant". IOP Conference Series: Earth and Environmental Science 1281, n.º 1 (1 de dezembro de 2023): 012048. http://dx.doi.org/10.1088/1755-1315/1281/1/012048.
Texto completo da fonteSmit, Berend. "Carbon Capture and Storage: introductory lecture". Faraday Discussions 192 (2016): 9–25. http://dx.doi.org/10.1039/c6fd00148c.
Texto completo da fonteWang, Wenjing, Mi Zhou e Daqiang Yuan. "Carbon dioxide capture in amorphous porous organic polymers". Journal of Materials Chemistry A 5, n.º 4 (2017): 1334–47. http://dx.doi.org/10.1039/c6ta09234a.
Texto completo da fonteDe Oliveira Maciel, Ayanne, Paul Christakopoulos, Ulrika Rova e Io Antonopoulou. "Enzyme-accelerated CO2 capture and storage (CCS) using paper and pulp residues as co-sequestrating agents". RSC Advances 14, n.º 9 (2024): 6443–61. http://dx.doi.org/10.1039/d3ra06927c.
Texto completo da fontebinti Mudzarol, Nor Haleeda, e Wan Norlinda Roshana binti Mohd Nawi. "Carbon Dioxide (CO<sub>2</sub>) Capture and Utilization Targeting". Key Engineering Materials 974 (16 de fevereiro de 2024): 173–78. http://dx.doi.org/10.4028/p-p2vqwr.
Texto completo da fonteJoshi, N., L. Sivachandiran e A. A. Assadi. "Perspectives in advance technologies/strategies for combating rising CO2 levels in the atmosphere via CO2 utilisation: A review". IOP Conference Series: Earth and Environmental Science 1100, n.º 1 (1 de dezembro de 2022): 012020. http://dx.doi.org/10.1088/1755-1315/1100/1/012020.
Texto completo da fonteA.Y., Iorliam, Opukumo A.W. e Anum B. "Carbon Capture Potential in Waste Modified Soils: A Review". International Journal of Mechanical and Civil Engineering 5, n.º 1 (23 de agosto de 2022): 25–38. http://dx.doi.org/10.52589/ijmce-x4j0etuu.
Texto completo da fonteKeeling, Ralph F., Andrew C. Manning e Manvendra K. Dubey. "The atmospheric signature of carbon capture and storage". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, n.º 1943 (28 de maio de 2011): 2113–32. http://dx.doi.org/10.1098/rsta.2011.0016.
Texto completo da fonteKoytsoumpa, Efthymia Ioanna, Christian Bergins e Emmanouil Kakaras. "The CO 2 economy: Review of CO 2 capture and reuse technologies". Journal of Supercritical Fluids 132 (fevereiro de 2018): 3–16. http://dx.doi.org/10.1016/j.supflu.2017.07.029.
Texto completo da fonteMasnadi, Mohammad S., John R. Grace, Xiaotao T. Bi, Naoko Ellis, C. Jim Lim e James W. Butler. "Biomass/coal steam co-gasification integrated with in-situ CO 2 capture". Energy 83 (abril de 2015): 326–36. http://dx.doi.org/10.1016/j.energy.2015.02.028.
Texto completo da fontePlayer, Stewart. "Darzi & Co: corporate capture in the NHS". Soundings 40, n.º 40 (1 de dezembro de 2008): 29–41. http://dx.doi.org/10.3898/136266208820465056.
Texto completo da fonteZhang, Jian, Jian Xing Ren, Tian Yu Sun e Qin Yang Wang. "CO2 Capture with MEA Absorption". Advanced Materials Research 807-809 (setembro de 2013): 1514–17. http://dx.doi.org/10.4028/www.scientific.net/amr.807-809.1514.
Texto completo da fonteBen-Itzhak, I., E. Wells, M. P. Stöckli, H. Tawara e K. D. Carnes. "Electron capture and fragmentation in Ar11++ CO collisions". Physica Scripta T73 (1 de janeiro de 1997): 270–72. http://dx.doi.org/10.1088/0031-8949/1997/t73/087.
Texto completo da fonteLiu, G. X., e Y. S. Yu. "Thermal-Electrochemical Co-drive System for Carbon Capture". Energy Procedia 114 (julho de 2017): 25–31. http://dx.doi.org/10.1016/j.egypro.2017.03.1142.
Texto completo da fonteHerbig, Marcus, Lia Gevorgyan, Moritz Pflug, Jörg Wagler, Sandra Schwarzer e Edwin Kroke. "CO 2 Capture with Silylated Ethanolamines and Piperazines". ChemistryOpen 9, n.º 9 (11 de dezembro de 2019): 894–902. http://dx.doi.org/10.1002/open.201900269.
Texto completo da fonteHerbig, Marcus, Lia Gevorgyan, Moritz Pflug, Jörg Wagler, Sandra Schwarzer e Edwin Kroke. "CO 2 Capture with Silylated Ethanolamines and Piperazines". ChemistryOpen 9, n.º 9 (setembro de 2020): 893. http://dx.doi.org/10.1002/open.202000212.
Texto completo da fonteCraig Bettenhausen. "BASF and Linde to build CO₂-capture pilot". C&EN Global Enterprise 99, n.º 21 (7 de junho de 2021): 12. http://dx.doi.org/10.1021/cen-09921-buscon10.
Texto completo da fontePatel, Hasmukh A., e Cafer T. Yavuz. "Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites". Faraday Discussions 183 (2015): 401–12. http://dx.doi.org/10.1039/c5fd00099h.
Texto completo da fonte