Literatura científica selecionada sobre o tema "Cancer cell microenvironment"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cancer cell microenvironment".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cancer cell microenvironment"
Shive, Heather R., John S. House, Jordan L. Ferguson, Dereje D. Jima, Aubrie A. Selmek e Dillon T. Lloyd. "Abstract PR011: Characterization of the precancerous and cancer microenvironment in a zebrafish sarcoma model". Clinical Cancer Research 28, n.º 18_Supplement (15 de setembro de 2022): PR011. http://dx.doi.org/10.1158/1557-3265.sarcomas22-pr011.
Texto completo da fonteCampbell, Caroline J., e Brian W. Booth. "The Influence of the Normal Mammary Microenvironment on Breast Cancer Cells". Cancers 15, n.º 3 (18 de janeiro de 2023): 576. http://dx.doi.org/10.3390/cancers15030576.
Texto completo da fonteGibson, Spencer, Tricia Choquette, Elizabeth S. Henson, Xioyan Yang e James B. Johnston. "Abstract 2516: Analysis of CLL Celllular Environment and Response (ACCER) is a novel method to understand the microenvironment in CLL". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 2516. http://dx.doi.org/10.1158/1538-7445.am2023-2516.
Texto completo da fonteAber, Etan R., Cristina F. Contreras, Mohd Omar Sikder, Kathy P. Li, Greta E. Forbes, Vishaka Gopalan, Sridhar Hannenhalli e Rosandra N. Kaplan. "Abstract LB308: Transcriptional profiling uncovers a unified program underlying the human metastatic and adjacent microenvironments". Cancer Research 84, n.º 7_Supplement (5 de abril de 2024): LB308. http://dx.doi.org/10.1158/1538-7445.am2024-lb308.
Texto completo da fonteBischoff, Philip, Alexandra Trinks, Benedikt Obermayer, Jan Patrick Pett, Jennifer Wiederspahn, Florian Uhlitz, Xizi Liang et al. "Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma". Oncogene 40, n.º 50 (18 de outubro de 2021): 6748–58. http://dx.doi.org/10.1038/s41388-021-02054-3.
Texto completo da fonteAbdelFattah, HebatAllah Samy, Mayar Tarek Ibrahim, Mostafa Mahmoud Nasr e Shaimaa Nasr Nasr Amin. "Cell Signaling in Cancer Microenvironment". International Journal of Advanced Biomedicine 2, n.º 2 (1 de maio de 2017): 47–51. http://dx.doi.org/10.18576/ab/020204.
Texto completo da fonteLoberg, Robert D., Christopher J. Logothetis, Evan T. Keller e Kenneth J. Pienta. "Pathogenesis and Treatment of Prostate Cancer Bone Metastases: Targeting the Lethal Phenotype". Journal of Clinical Oncology 23, n.º 32 (10 de novembro de 2005): 8232–41. http://dx.doi.org/10.1200/jco.2005.03.0841.
Texto completo da fonteKim, Jaehong. "Regulation of Immune Cell Functions by Metabolic Reprogramming". Journal of Immunology Research 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/8605471.
Texto completo da fonteGarre, Elena, Anna Gustafsson, Maria Carmen Leiva, Joakim Håkansson, Anders Ståhlberg, Anikó Kovács e Göran Landberg. "Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics". Cancers 14, n.º 9 (26 de abril de 2022): 2172. http://dx.doi.org/10.3390/cancers14092172.
Texto completo da fonteLeach, Damien, Alison Buxton, Gilberto Serrano de Almeida, Grant Buchanan e Charlotte Lynne Bevan. "Androgen Activity in the Primary and Metastatic Prostate Cancer Microenvironments Influences Disease Progression and Patient Outcomes". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A1011. http://dx.doi.org/10.1210/jendso/bvab048.2068.
Texto completo da fonteTeses / dissertações sobre o assunto "Cancer cell microenvironment"
YOUSAFZAI, MUHAMMAD SULAIMAN. "Cancer cell mechanics and cell microenvironment: An optical tweezers study". Doctoral thesis, Università degli Studi di Trieste, 2016. http://hdl.handle.net/11368/2908097.
Texto completo da fonteHodkinson, Philip Simon. "Tumour microenvironment interactions of small cell lung cancer". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4254.
Texto completo da fonteFong, Jenna. "Breast cancer cells affect bone cell differentiation and the bone microenvironment". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104758.
Texto completo da fonteLe cancer du sein est le cancer plus diagnostiqué chez les femmes. On estime qu'environ une femme sur sept en sera affectée. La diffusion du cancer du sein aux emplacements secondaires est généralement incurable. L'os est l'emplacement préféré de la métastase, où le développement d'une tumeur secondaire cause de l'osteolyse, de l'hypercalcemie, et une douleur considérable. Cependant, comment les cellules de cancer du sein établissent des interactions supportifs avec des cellules d'os n'est pas bien compris. Nous avons examiné les effets des facteurs libérés des cellules du cancer du sein MDA-MB-231 et 4T1 sur la différentiation des cellules de moelle de la souris C57BL6. Le traitement avec des facteurs cancer-dérivés a produit une diminution de 40-60% des marqueurs de différentiation d'osteoblast, comparé au traitement par l'acide ascorbique, et a induit un changement osteoclastogenique dans le rapport du RANKL/osteoprotegerin. L'exposition des cellules d'os à des facteurs dérivés du cancer du sein a ensuite stimulé l'attachement des cellules cancéreuses aux osteoblasts non mûrs. L'inhibition du γ-secretase utilisant les inhibiteurs pharmacologiques DAPT et le Compound E a complètement inversé l'osteoclastogenise cancer-induit aussi bien que le perfectionnement cancer-induit de l'attachement de cellules cancéreuses, identifiant l'activité de le γ-secretase comme étant le médiateur principal de ces effets. Nous avons ensuite évalué les effets des cellules cancereuse sur le métabolisme énergétique des cellules d'os. Le traitement des cellules de moelle avec le medium conditionné des cellules du cancer du sein 4T1 a eu comme conséquence une augmentation des mitochondries à haut-potentiel de membrane, une augmentation de 2.3 fois le contenu cellulaire de triphosphate d'adénosine, et une consommation plus rapide du glucose. Ce changement de l'énergétique a été accompagné d'une stimulation d'AMPK dans la protéine et l'ADN messagère. Pour évaluer les effets du statut de haute énergie dans les osteoclasts, nous avons élevé l'énergique des osteoclasts avec du pyruvate de sodium. Cette addition a causée une croissance des osteoclasts, avec des plus grands nucleus, et la résorption de plus de substrat. Ainsi, nous avons découvert l'osteoblast comme étant un intermédiaire clé à la signalisation prémetastatique par des cellules du cancer du sein. Nous avons aussi indiqué le γ-secretase comme cible robuste pour le developpement de thérapeutique potentiellement capable de réduire l'autoguidage et la progression des métastases de cancer à l'os. Additonellement, nous avons découvert l'énergétique intensifiée chez les cellules d'os exposées aux facteurs cellule-libérés par le cancer du sein, qui mène à une osteoclastogenesise plus active et plus importante. La modification de la voie d'AMPK peut s'avérer être une cible thérapeutique importante pour que la métastase de cancer du sein aux os.
Daukšte, Liene. "Mathematical Modelling of Cancer Cell Population Dynamics". Thesis, University of Canterbury. Mathematics and Statistics, 2012. http://hdl.handle.net/10092/9356.
Texto completo da fonteTruong, Danh, Julieann Puleo, Alison Llave, Ghassan Mouneimne, Roger D. Kamm e Mehdi Nikkhah. "Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment". NATURE PUBLISHING GROUP, 2016. http://hdl.handle.net/10150/621806.
Texto completo da fonteGiraldo-Castillo, Nicolas. "The Immune Microenvironment in Clear Cell Renal Cell Carcinoma : The heterogeneous immune contextures accompanying CD8+ T cell infiltration in clear cell Renal Cell Carcinoma". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066321/document.
Texto completo da fonteTo decipher the potential mechanisms linking increased CD8+ T cell infiltration with an adverse clinical outcome in ccRCC, in this study we determined: 1) the prognosis associated with the expression of immune checkpoints and its coordination with dendritic cell (DC) and CD8+ cell infiltration, and 2) the phenotypic traits of CD8+ tumor infiltrating lymphocytes. The prognosis associated with CD8+ and DC infiltrations, in addition to the expression of immune checkpoints were investigated in a cohort of 135 ccRCC by quantitative immunohistochemistry. We found that the densities of CD8+, PD-1+ and LAG-3+ cells were closely correlated, and independently associated with decreased PFS and OS. In addition, patients whose tumors presented both high densities of PD-1+ cells and PD-L1+ and/or L2+ tumor cells, displayed the worst clinical outcome. High densities of immature DC isolated in the tumour stroma were associated with high expression of immune checkpoints and patients’ poor clinical outcome. In contrast, the presence of mature DC within Tertiary Lymphoid Structures identified, among the tumours with high CD8+-TIL densities, those with low expression of immune checkpoints and prolonged survival. We also investigated the phenotype of freshly isolated CD8+TIL in 21 ccRCC by flow cytometry. We found a group tumors (8/21) characterised by the over-expression of inhibitory (PD-1 and TIM-3) and activation markers (CD69 and CD38), the expansion of the effector memory cell subpopulation (CCR7-CD45RA-), and a trend toward more aggressive features. In summary, we demonstrated that the infiltration with CD8+ TIL in ccRCC is accompanied by the enhanced expression of immune checkpoints and a poorly coordinated immune response in a subgroup of aggressive tumors
Xing, Fei. "ROLE OF NOTCH SIGNALING IN BREAST CANCER METASTASIS". OpenSIUC, 2012. https://opensiuc.lib.siu.edu/dissertations/514.
Texto completo da fonteKaira, Mustapha. "In situ molecular profilling of the microenvironment of breast carcinoma". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265258.
Texto completo da fonteKiyasu, Yoshiyuki. "Disruption of CCR1-mediated myeloid cell accumulation suppresses colorectal cancer progression in mice". Kyoto University, 2020. http://hdl.handle.net/2433/259008.
Texto completo da fonteSundquist, E. (Elias). "The role of tumor microenvironment on oral tongue cancer invasion and prognosis". Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526217659.
Texto completo da fonteTiivistelmä Liikkuvan kielen levyepiteelikarsinooma (OTSCC) on suuontelon yleisin syöpä. Viiden vuoden kuolleisuus OTSCC:an on edelleen noin 50 %. Kasvaimen mikroympäristön (TME) tiedetään nykyään olevan tärkeässä roolissa syövän kehityksessä ja etäpesäkkeiden muodostuksessa, sekä tarjoavan työkaluja ennusteiden laadintaan. Tämän tutkimuksen tarkoituksena oli selvittää TME:n hypoksian ja liukoisten tekijöiden vaikutusta syöpäsolujen liikkumiseen ja invaasioon ympäröivään kudokseen, sekä tutkia kahden solunulkoisen matriksin (ECM) proteiinin, tenaskiini-C:n (TNC) ja fibronektiinin (FN), vaikutusta OTSCC:n ennusteeseen. Hypoksian vaikutusta tutkittiin käyttäen suun levyepiteelikarsinoomasoluja liikkuvuus- ja invaasiokokeissa. Invaasiokokeissa hyödynnettiin kolmiulotteista ihmisen myoomaan perustuvaa invaasiomallia. Myös liukoisten tekijöiden ja ECM:n muutosten vaikutusten tutkimisessa käytettiin myoomamallia: liukoisten tekijöiden vaikutusta tutkittiin huuhtomalla myoomakiekot ennen niiden käyttämistä, ja ECM:n muutosten vaikutusta kylmäkuivaamalla ja uudelleen nesteyttämällä myoomakiekot. ECM:ia tutkittiin myös analysoimalla TNC:n ja FN:n värjäytyvyyden merkitystä OTSCC:n ennusteessa. Hypoksian vaikutus osoittautui solulinjariippuvaiseksi: hypoksia lisäsi kielisyöpäsolujen liikkuvuutta ja invaasiota eniten aggressiivisimmilla solulinjoilla. Lisäksi solujen vaste hypoksialle oli erilainen huuhdotussa kudoksessa. Huuhteluliuos analysoitiin ja siitä löydettiin solujen liikkumiseen vaikuttavia tekijöitä. TME:n havaittiin olevan ratkaisevassa roolissa syöpäsolujen invaasiossa: syöpäsolut eivät kyenneet invasoitumaan lainkaan ei-neoplastiseen kudokseen. Lisäksi muutosten ECM:ssä havaittiin johtavan muutoksiin solujen käyttämässä invaasion mekanismissa. Strooman TNC:n ja FN:n värjäytyvyyden todettiin olevan erinomaisia ennustekijöitä aikaisen vaiheen OTSCC:ssa. Tiivistettynä voidaan todeta, että tämä tutkimus alleviivasi useiden TME:n komponenttien vaikutusta syövän invaasiolle ja ennusteelle OTSCC:ssä. Lisäksi se tarjoaa käyttökelpoiset työkalut (TNC ja FN) tarkemmalle diagnostiikalle aikaisen vaiheen OTSCC:ssä
Livros sobre o assunto "Cancer cell microenvironment"
Prasad, Mayuri Sinha, Pranela Rameshwar e Cristian Pablo Pennisi. The Stem Cell Microenvironment and Its Role in Regenerative Medicine and Cancer Pathogenesis. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339779.
Texto completo da fonteJamie, Goode, Chadwick Derek, Novartis Foundation e Symposium on the Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity (2000 : London, England), eds. The tumour microenvironment: Causes and consequences of hypoxia and acidity. Chichester: Wiley, 2001.
Encontre o texto completo da fonteGianfranco, Fiorentini, Cogle Christopher R e SpringerLink (Online service), eds. Cancer Microenvironment and Therapeutic Implications: Tumor Pathophysiology Mechanisms and Therapeutic Strategies. Dordrecht: Springer Netherlands, 2009.
Encontre o texto completo da fonteSiemann, Dietmar W. Tumor Microenvironment. Wiley & Sons, Incorporated, John, 2011.
Encontre o texto completo da fonteSiemann, Dietmar W. Tumor Microenvironment. Wiley & Sons, Incorporated, John, 2011.
Encontre o texto completo da fonteSiemann, Dietmar W. Tumor Microenvironment. Wiley & Sons, Incorporated, John, 2010.
Encontre o texto completo da fonteTumor microenvironment. Hoboken: Wiley, 2011.
Encontre o texto completo da fontePhysics of Cancer. Cambridge University Press, 2017.
Encontre o texto completo da fonteZapperi, Stefano, e Caterina A. M. La Porta. Physics of Cancer. Cambridge University Press, 2017.
Encontre o texto completo da fonteZapperi, Stefano, e Caterina A. M. La Porta. Physics of Cancer. Cambridge University Press, 2017.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cancer cell microenvironment"
Zucker, Stanley, e Jian Cao. "Matrix Metalloproteinases and Cancer Cell Invasion/Metastasis". In The Tumor Microenvironment, 531–54. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6615-5_25.
Texto completo da fonteEnders, Greg H. "Ink4a Locus: Beyond Cell Cycle". In Cancer Genome and Tumor Microenvironment, 217–29. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0711-0_10.
Texto completo da fonteSazeides, Christos, e Anne Le. "Metabolic Relationship Between Cancer-Associated Fibroblasts and Cancer Cells". In The Heterogeneity of Cancer Metabolism, 189–204. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_14.
Texto completo da fonteJung, Jin G., e Anne Le. "Metabolism of Immune Cells in the Tumor Microenvironment". In The Heterogeneity of Cancer Metabolism, 173–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_13.
Texto completo da fonteBennani, N. Nora, e Stephen M. Ansell. "Tumor Microenvironment in T-Cell Lymphomas". In Cancer Treatment and Research, 69–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99716-2_3.
Texto completo da fonteAlvarez-Silva, Marcio. "Stem Cell Niche and Microenvironment". In Principles of Stem Cell Biology and Cancer, 45–64. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118670613.ch3.
Texto completo da fonteWilke, Cailin Moira, Shuang Wei, Lin Wang, Ilona Kryczek, Jingyuan Fang, Guobin Wang e Weiping Zou. "T Cell and Antigen-Presenting Cell Subsets in the Tumor Microenvironment". In Cancer Immunotherapy, 17–44. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4732-0_2.
Texto completo da fonteColombatti, Alfonso, Carla Danussi, Eliana Pivetta e Paola Spessotto. "Cancer Stem Cells and the Microenvironment". In Advances in Cancer Stem Cell Biology, 69–84. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0809-3_5.
Texto completo da fonteBrady, Donita C., Jamie K. Alan e Adrienne D. Cox. "Rho GTPases in Regulation of Cancer Cell Motility, Invasion, and Microenvironment". In Cancer Genome and Tumor Microenvironment, 67–91. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0711-0_4.
Texto completo da fonteCrespo, Joel, Ilona Kryczek, Theodore Welling, Shuang Wei e Weiping Zou. "T Cell Fate in the Tumor Microenvironment". In Cancer Drug Discovery and Development, 53–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21167-1_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cancer cell microenvironment"
Kim, Taeyeon, Jisung Kwak, Yeeun Roh, Sang Jun Sim, Hyun Seok Song e Minah Seo. "Spectroscopic Analysis of Live Cancer Cell Microenvironment with Terahertz Metasurface Biosensing Platform". In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/irmmw-thz60956.2024.10697664.
Texto completo da fonteGileva, M. S., E. G. Ufimceva, L. F. Gulyaeva e V. V. Kozlov. "EX VIVO CHARACTERISTICS OF NON-SMALL CELL LUNG CANCER CELLS". In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-308.
Texto completo da fonteDereli-Korkut, Zeynep, e Sihong Wang. "Microfluidic Cell Arrays to Mimic 3D Tissue Microenvironment". In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80411.
Texto completo da fonteMusulin, Jelena, Daniel Štifanić, Ana Zulijani e Zlatan Car. "SEMANTIC SEGMENTATION OF ORAL SQUAMOUS CELL CARCINOMA ON EPITHELLIAL AND STROMAL TISSUE". In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.194m.
Texto completo da fonteLevina, Vera V., Adele Marrangoni, Elieser Gorelik, Robert Edwards e Anna Lokshin. "Abstract 3408: Ovarian cancer stem cell cytokine microenvironment". In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3408.
Texto completo da fonteManandhar, Sarala, Chang-gu Kim, Su Young Oh, Sun-Hee Lee, Jiyoon Seok, Yuk-Dong Jung, Hye-Eun Lee, Young-Sun Choi e You Mie* Lee. "Abstract B21: Exostosin 1 regulates cancer cell stemness in breast cancer cells". In Abstracts: AACR Special Conference: The Function of Tumor Microenvironment in Cancer Progression; January 7-10, 2016; San Diego, CA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.tme16-b21.
Texto completo da fonteCamargo, Luana Cristina, Joao Paulo Figueiro Longo, Karen Letycia Rodrigues de Paiva, Marina Mesquita Simões, Thais Bergmann e Victor Carlos Mello da Silva. "Immunotherapy vaccines for triple-negative breast cancer and its influence on the tumor microenvironment". In Brazilian Breast Cancer Symposium 2023. Mastology, 2023. http://dx.doi.org/10.29289/259453942023v33s1024.
Texto completo da fonteTang, Xin, Tony Cappa, Theresa B. Kuhlenschmidt, Mark S. Kuhlenschmidt e Taher A. Saif. "Studying the Mechanical Sensitivity of Human Colon Cancer Cells Through a Novel Bio-MEMS Force Sensor". In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13237.
Texto completo da fonteAbdurakhmanova, M. M., A. A. Leontieva, A. A. Yurina, T. N. Belovezhets, S. V. Kulemzin, E. V. Kuligina, V. A. Richter e A. A. Nushtaeva. "INFLUENCE OF IL-15 AND TGFΒ ON THE PHENOTYPE OF NK CELLS WITHIN THE 3D-MODEL OF BREAST CANCER". In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-284.
Texto completo da fonteCorreia, Ana Luisa. "Abstract PO005: Hepatic stellate cells suppress NK cell sustained breast cancer dormancy". In Abstracts: AACR Virtual Special Conference: The Evolving Tumor Microenvironment in Cancer Progression: Mechanisms and Emerging Therapeutic Opportunities; in association with the Tumor Microenvironment (TME) Working Group; January 11-12, 2021. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.tme21-po005.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cancer cell microenvironment"
Gordon, Ryan R. Identification of Cell Nonautonomous DNA Damage Responses in the Tumor Microenvironment that Contribute to Cancer Therapy Resistance. Fort Belvoir, VA: Defense Technical Information Center, março de 2013. http://dx.doi.org/10.21236/ada577632.
Texto completo da fonteGordon, Ryan R. Identification of Cell Nonautonomous DNA Damage Responses in the Tumor Microenvironment that Contribute to Cancer Therapy Resistance. Fort Belvoir, VA: Defense Technical Information Center, maio de 2014. http://dx.doi.org/10.21236/ada601305.
Texto completo da fonteMastro, Andrea M. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System. Fort Belvoir, VA: Defense Technical Information Center, abril de 2014. http://dx.doi.org/10.21236/ada604844.
Texto completo da fonteMastro, Andrea M., e Erwin Vogler. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System. Fort Belvoir, VA: Defense Technical Information Center, abril de 2015. http://dx.doi.org/10.21236/ada621382.
Texto completo da fonteOuyang, Zhiqiang, Qian Li, Guangrong Zheng, Tengfei Ke, Jun Yang e Chengde Liao. Radiomics for predicting tumor microenvironment phenotypes in non-small cell lung cance: A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, setembro de 2022. http://dx.doi.org/10.37766/inplasy2022.9.0060.
Texto completo da fonteShe, Jingyao, Yue Chen, Chunyun Liang, Tong Chu, Jing Yu e Peijuan Wang. Evaluating the Synergistic Impact of PD-1/PD-L1 Blockade and Platinum-Based Chemotherapy in Modulating the Tumor Microenvironment for Enhanced T Cell-Mediated Immune Responses in Advanced Endometrial Cancer: A Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, setembro de 2024. http://dx.doi.org/10.37766/inplasy2024.9.0121.
Texto completo da fonteTang, Dean G. Microenvironment-Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs). Fort Belvoir, VA: Defense Technical Information Center, outubro de 2014. http://dx.doi.org/10.21236/ada613324.
Texto completo da fonteLuo, Yunping, e Ralph A. Reisfeld. Priming the Tumor Immune Microenvironment Improves Immune Surveillance of Cancer Stem Cells and Prevents Cancer Recurrence. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2012. http://dx.doi.org/10.21236/ada574527.
Texto completo da fonteReisfeld, Ralph R., Debbie Liao e Yunping Luo. Priming the Tumor Immune Microenvironment Improves Immune Surveillance of Cancer Stem Cells and Prevents Cancer Recurrence. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2011. http://dx.doi.org/10.21236/ada553886.
Texto completo da fonteLee Sohn, Lydia. Using 3D Super-Resolution Microscopy to Probe Breast Cancer Stem Cells and Their Microenvironment. Fort Belvoir, VA: Defense Technical Information Center, maio de 2014. http://dx.doi.org/10.21236/ada609488.
Texto completo da fonte