Literatura científica selecionada sobre o tema "Butterfly factorization"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Butterfly factorization".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Butterfly factorization"
Li, Yingzhou, Haizhao Yang, Eileen R. Martin, Kenneth L. Ho e Lexing Ying. "Butterfly Factorization". Multiscale Modeling & Simulation 13, n.º 2 (janeiro de 2015): 714–32. http://dx.doi.org/10.1137/15m1007173.
Texto completo da fonteLi, Yingzhou, e Haizhao Yang. "Interpolative Butterfly Factorization". SIAM Journal on Scientific Computing 39, n.º 2 (janeiro de 2017): A503—A531. http://dx.doi.org/10.1137/16m1074941.
Texto completo da fonteLi, Yingzhou, Haizhao Yang e Lexing Ying. "Multidimensional butterfly factorization". Applied and Computational Harmonic Analysis 44, n.º 3 (maio de 2018): 737–58. http://dx.doi.org/10.1016/j.acha.2017.04.002.
Texto completo da fontePang, Qiyuan, Kenneth L. Ho e Haizhao Yang. "Interpolative Decomposition Butterfly Factorization". SIAM Journal on Scientific Computing 42, n.º 2 (janeiro de 2020): A1097—A1115. http://dx.doi.org/10.1137/19m1294873.
Texto completo da fonteLiu, Yang, Xin Xing, Han Guo, Eric Michielssen, Pieter Ghysels e Xiaoye Sherry Li. "Butterfly Factorization Via Randomized Matrix-Vector Multiplications". SIAM Journal on Scientific Computing 43, n.º 2 (janeiro de 2021): A883—A907. http://dx.doi.org/10.1137/20m1315853.
Texto completo da fonteChen, Ze, Juan Zhang, Kenneth L. Ho e Haizhao Yang. "Multidimensional phase recovery and interpolative decomposition butterfly factorization". Journal of Computational Physics 412 (julho de 2020): 109427. http://dx.doi.org/10.1016/j.jcp.2020.109427.
Texto completo da fonteJaber, Marwan A., e Daniel Massicotte. "Radix-2α/4β Building Blocks for Efficient VLSI’s Higher Radices Butterflies Implementation". VLSI Design 2014 (13 de maio de 2014): 1–13. http://dx.doi.org/10.1155/2014/690594.
Texto completo da fonteBremer, James, Ze Chen e Haizhao Yang. "Rapid Application of the Spherical Harmonic Transform via Interpolative Decomposition Butterfly Factorization". SIAM Journal on Scientific Computing 43, n.º 6 (janeiro de 2021): A3789—A3808. http://dx.doi.org/10.1137/20m1333845.
Texto completo da fonteYang, Haizhao. "A unified framework for oscillatory integral transforms: When to use NUFFT or butterfly factorization?" Journal of Computational Physics 388 (julho de 2019): 103–22. http://dx.doi.org/10.1016/j.jcp.2019.02.044.
Texto completo da fonteMardan, Suha Suliman, e Mounir Taha Hamood. "New fast Walsh–Hadamard–Hartley transform algorithm". International Journal of Electrical and Computer Engineering (IJECE) 13, n.º 2 (1 de abril de 2023): 1533. http://dx.doi.org/10.11591/ijece.v13i2.pp1533-1540.
Texto completo da fonteTeses / dissertações sobre o assunto "Butterfly factorization"
Zheng, Léon. "Frugalité en données et efficacité computationnelle dans l'apprentissage profond". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0009.
Texto completo da fonteThis thesis focuses on two challenges of frugality and efficiency in modern deep learning: data frugality and computational resource efficiency. First, we study self-supervised learning, a promising approach in computer vision that does not require data annotations for learning representations. In particular, we propose a unification of several self-supervised objective functions under a framework based on rotation-invariant kernels, which opens up prospects to reduce the computational cost of these objective functions. Second, given that matrix multiplication is the predominant operation in deep neural networks, we focus on the construction of fast algorithms that allow matrix-vector multiplication with nearly linear complexity. More specifically, we examine the problem of sparse matrix factorization under the constraint of butterfly sparsity, a structure common to several fast transforms like the discrete Fourier transform. The thesis establishes new theoretical guarantees for butterfly factorization algorithms, and explores the potential of butterfly sparsity to reduce the computational costs of neural networks during their training or inference phase. In particular, we explore the efficiency of GPU implementations for butterfly sparse matrix multiplication, with the goal of truly accelerating sparse neural networks
Trabalhos de conferências sobre o assunto "Butterfly factorization"
Shekofteh, S. Kazem, Christian Alles e Holger Fröning. "Reducing Memory Requirements for the IPU using Butterfly Factorizations". In SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3624062.3624196.
Texto completo da fonte