Literatura científica selecionada sobre o tema "Buildings indoor environments"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Buildings indoor environments".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Buildings indoor environments"
Rajapaksha, U. "The other side". Bolgoda Plains 3, n.º 2 (2023): 28–34. http://dx.doi.org/10.31705/bprm.v3(2).2023.6.
Texto completo da fonteKim, Ki Rim, Kyung Sun Lee e Jaewook Lee. "A STUDY ON THE EVALUATION METHODS OF INDOOR LIGHT ENVIRONMENT FOR OCCUPANT COMFORT AND WELL-BEING". Journal of Green Building 18, n.º 4 (1 de dezembro de 2023): 99–128. http://dx.doi.org/10.3992/jgb.18.4.99.
Texto completo da fonteHong, Xiaowei, Guangjin Zhang e Yufeng Zhang. "The effects of building layouts and envelope on indoor thermal environment of Hui style traditional buildings in Wuyuan". E3S Web of Conferences 194 (2020): 05013. http://dx.doi.org/10.1051/e3sconf/202019405013.
Texto completo da fontePang, Yueyong, Chi Zhang, Liangchen Zhou, Bingxian Lin e Guonian Lv. "Extracting Indoor Space Information in Complex Building Environments". ISPRS International Journal of Geo-Information 7, n.º 8 (9 de agosto de 2018): 321. http://dx.doi.org/10.3390/ijgi7080321.
Texto completo da fonteAhsan, Mozammil, Wajiha Shahzad e Khalid Mahmood Arif. "AI-Based Controls for Thermal Comfort in Adaptable Buildings: A Review". Buildings 14, n.º 11 (4 de novembro de 2024): 3519. http://dx.doi.org/10.3390/buildings14113519.
Texto completo da fonteMahdavi, Ardeshir. "Can we Quantify the Ecological Valency of Built Environments?" Applied Mechanics and Materials 887 (janeiro de 2019): 369–73. http://dx.doi.org/10.4028/www.scientific.net/amm.887.369.
Texto completo da fonteSu, Bin, Peter McPherson, Renata Jadresin Milic, Xinxin Wang, Sameh Shamout e Yifeng Liang. "Field Study to Compare and Evaluate Summer Thermal Comfort of School Buildings with Different Moderate Thermal Mass in Their Building Elements". Buildings 13, n.º 12 (22 de novembro de 2023): 2913. http://dx.doi.org/10.3390/buildings13122913.
Texto completo da fonteShelton, Brian G., Kimberly H. Kirkland, W. Dana Flanders e George K. Morris. "Profiles of Airborne Fungi in Buildings and Outdoor Environments in the United States". Applied and Environmental Microbiology 68, n.º 4 (abril de 2002): 1743–53. http://dx.doi.org/10.1128/aem.68.4.1743-1753.2002.
Texto completo da fonteChen, Jing. "RISK ASSESSMENT FOR RADON EXPOSURE IN VARIOUS INDOOR ENVIRONMENTS". Radiation Protection Dosimetry 185, n.º 2 (9 de janeiro de 2019): 143–50. http://dx.doi.org/10.1093/rpd/ncy284.
Texto completo da fonteHarčárová, Katarína, Silvia Vilčeková e Magdalena Balintova. "Building Materials as Potential Emission Sources of VOC in the Indoor Environment of Buildings". Key Engineering Materials 838 (abril de 2020): 74–80. http://dx.doi.org/10.4028/www.scientific.net/kem.838.74.
Texto completo da fonteTeses / dissertações sobre o assunto "Buildings indoor environments"
Bylund, Melin Charlotte, e Mattias Legnér. "Quantification, the link to relate climate-induced damage to indoor environments in historic buildings". Högskolan på Gotland, Institutionen för kultur, energi och miljö, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hgo:diva-1879.
Texto completo da fonteClimate for Culture
Cultural heritage and human comfort: the issue of indoor climate in historic buildings in the twentieth cnentury
Pommer, Linda. "Oxidation of terpenes in indoor environments : A study of influencing factors". Doctoral thesis, Umeå University, Ecology and Environmental Science, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-29.
Texto completo da fonteIn this thesis the oxidation of monoterpenes by O3 and NO2 and factors that influenced the oxidation were studied. In the environment both ozone (O3) and nitrogen dioxide (NO2) are present as oxidising gases, which causes sampling artefacts when using Tenax TA as an adsorbent to sample organic compounds in the air. A scrubber was developed to remove O3 and NO2 prior to the sampling tube, and artefacts during sampling were minimised when using the scrubber. The main organic compounds sampled in this thesis were two monoterpenes, alfa-pinene and delta-3-carene, due to their presence in both indoor and outdoor air. The recovery of the monoterpenes through the scrubber varied between 75-97% at relative humidities of 15-75%.
The reactions of alfa-pinene and delta-3-carene with O 3, NO2 and nitric oxide (NO) at different relative humidities (RHs) and reaction times were studied in a dark reaction chamber. The experiments were planned and performed according to an experimental design were the factors influencing the reaction (O3, NO2, NO, RH and reaction times) were varied between high and low levels. In the experiments up to 13% of the monoterpenes reacted when O3, NO2, and reaction time were at high levels, and NO, and RH were at low levels. In the evaluation eight and seven factors (including both single and interaction factors) were found to influence the amount of alfa-pinene and delta-3-carene reacted, respectively. The three most influencing factors for both of the monoterpenes were the O 3 level, the reaction time, and the RH. Increased O3 level and reaction time increased the amount of monoterpene reacted, and increased RH decreased the amount reacted.
A theoretical model of the reactions occurring in the reaction chamber was created. The amount of monoterpene reacted at different initial settings of O3, NO2, and NO were calculated, as well as the influence of different reaction pathways, and the concentrations of O3 and NO2, and NO at specific reaction times. The results of the theoretical model were that the reactivity of the gas mixture towards alfa-pinene and delta-3-carene was underestimated. But, the calculated concentrations of O3, NO2, and NO in the theoretical model were found to correspond to a high degree with experimental results performed under similar conditions. The possible associations between organic compounds in indoor air, building variables and the presence of sick building syndrome were studied using principal component analysis. The most complex model was able to separate 71% of the “sick” buildings from the “healthy” buildings. The most important variables that separated the “sick” buildings from the “healthy” buildings were a more frequent occurrence or a higher concentration of compounds with shorter retention times in the “sick” buildings.
The outcome of this thesis could be summarised as follows;
-
-
-
-
Ljungquist, Katarina. "Probabilistic design for evaluation of indoor environment". Licentiate thesis, Luleå tekniska universitet, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18720.
Texto completo da fonteVärlden över bedrivs det omfattande forskning på inomhusmiljö och luftkvalitet. Trots det finns det fortfarande ingen metod för att bestämma sannolikheten för att någon form av definierad skada inträffar på inomhusmiljön med konsekvenser för människors hälsa på samma sätt som det finns metoder i moderna konstruktionsregler för att bestämma risken för mekanisk påverkan på byggnadskonstruktioner. Förekomsten av en sådan metod skulle vara ett viktigt instrument för miljöbeslut i alla led i byggprocessen.En metod har utvecklats i denna licentiatuppsats för att bestämma risken för att höga koncentrationer av radon skall förekomma i inomhusluften. Metoden har tagits fram genom att tillämpa riskanalys på en platta på mark som är en vanlig handläggningsmetod för bostadshus i Sverige. Orsakerna till den oönskade händelsen "Läckage av radon in i byggnaden" har kunnat härledas med hjälp av felträdsanalys genom att starta i toppen av trädet och arbeta sig nedåt. Proceduren upprepas tills primärhändelser erhålls för vilka sannolikheter kan bestämmas. Felträdsanalys är en deduktiv metod som är utvecklad för system som är uppbyggda av elektroniska komponenter och för vilka sannolikheter för fel i form av relativa frekvenser är enkla att bestämma. Det är svårare att bestämma sannolikheter för fel i byggprocessen eftersom varje objekt oftast är unikt. Denna osäkerhet kan dock hanteras genom att använda samma säkerhetsfilosofiska modell som används för mekanisk påverkan på bärande konstruktioner där hänsyn kan tas till flera stokastiska variabler i samma analys vilket gör det möjligt att ersätta en hel gren i ett felträd. För att hantera osäkerheter används den säkerhetsfilosofiska modellen för bärande konstruktioner sannolikhetsteori och för att bestämma risken kan Monte Carlosimuleringar och 'första ordningens nivå 2'-metod användas.För att få en ohälsosam inomhusmiljö behövs miljöpåverkan tillsammans med ett fel i byggnaden orsakat i något led av byggprocessen. Exempel på fel som kan medföra en ohälsosam inomhusmiljö är att byggherren ändrar eller gör kompletteringar i byggnaden, konstruktionen är olämpligt utförd eller att materialleveranser är felaktiga. Flera undersökningar har kommit fram till att t.ex. bristande engagemang eller bristande kunskap många gånger är orsakerna till de fel som uppkommer i byggprocessen. Bristande kunskap kan också bero på att kunskapen inte finns, dvs byggnaden utförs på ett riktigt sätt med avseende på den kunskap som finns. Fel kan aldrig elimineras helt men användandet av felträdsanalys för att ta fram orsakerna till en ohälsosam inomhusmiljö och bestämmandet av risken skulle kunna vara ett värdefullt verktyg i kvalitetssystem för att få en överblick över hela byggprocessen och för att kunna identifiera de svaga länkarna.Bostadshuset som exemplifieras i den här uppsatsen är beläget utanför Linköping eftersom det där har förekommit långtidsmätningar på radonhalten i marken. Byggnaden ventileras genom självdrag och grundplattans konstruktion består, med start från schaktbotten, av en geotextil, 150 mm vältvättad makadam, 50 mm isolering, 100 mm armerad betong, avjämningsmassa samt golvbeläggning. Orsakerna till radonkoncentrationer inomhus har bestämts genom felträdsanalys och består av "Läckage av radonhaltig jordluft", "Radonhaltigt dricksvatten" och "Byggnadsmaterialet innehåller radium som sönderfaller till radon". Den huvudsakliga orsaken till radon i inomhusluften är "Läckage av radonhaltig jordluft" och den utvecklas därför vidare och orsakas av "Lägre lufttryck inomhus än utomhus", "Jordluften under eller runt byggnaden innehåller radon" och "Fel i byggnadsdelen med hänsyn till lufttäthet". En funktion som beskriver förhållandet mellan de olika primärhändelserna och dess stokastiska variabler har tagits fram och genom att använda både Monte Carlo-simulering och första ordningens nivå 2-metod har sannolikheten samt säkerhetsindex β bestämts för att den oönskade händelsen skall inträffa.Hänsyn har bara tagits till läckage av radonhaltig jordluft genom sprickor i betongplattan och det har varit svårt att hitta lämpliga förhållanden mellan hur sprickor uppkommer, sprickvidd och betongens och armeringens egenskaper. Därför har antaganden gjorts i vissa fall. För normalriskmark, som 70 % av Sveriges yta består av, har simuleringarna och beräkningarna givit ett säkerhetsindex β = 0.30 för bostadshus där människor uppehåller sig mer än tillfälligt. En jämförelse kan göras med de svenska konstruktionsreglerna där bärande konstruktioner i ett bostadshus skall uppfylla säkerhetsklass 2 med ett säkerhetsindex β ≥ 4.3 för att ett bostadshus, byggt på normalriskmark med en platta på mark enligt denna uppsats, skall innehålla radonkoncentrationer över det svenska normgränsvärdet 200 Bq/m3, är alltså mer än 40.000 gånger större än risken för att den bärande konstruktionen inte skall hålla.
Godkänd; 2003; 20070217 (ysko)
Coombs, Kanistha C. "The Indoor Environment of Green versus Non-Green Buildings". University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1447070716.
Texto completo da fonteAdler, Stuart Alan. "Indoor air quality and architecture". Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/23178.
Texto completo da fontePITTANA, ILARIA. "The Indoor Environmental Quality (IEQ) and comfort in educational buildings". Doctoral thesis, Università degli studi di Padova, 2022. https://hdl.handle.net/11577/3460790.
Texto completo da fonteDiversamente da quanto accade negli studi di laboratorio, negli edifici scolastici gli occupanti sono esposti contemporaneamente a stimoli acustici, termici, visivi e di qualità dell'aria e l'effetto dell'ambiente interno sulla percezione e sulle prestazioni degli studenti dipende dai loro effetti combinati. La presente ricerca si occupa della valutazione della qualità ambientale interna (IEQ) negli edifici scolastici mediante misurazioni fisiche (valutazione oggettiva), somministrazione di questionari (valutazione soggettiva) e simulazione e calibrazione di modelli energetici. Il lavoro propone diversi metodi originali per: la progettazione di un questionario soggettivo standard coerente per i quattro domini di comfort, ovvero IAQ, ambiente termico, acustico e visivo (i); raccolta dati (ii) e la somministrazione del questionario (iii); validazione e analisi dei dati, ovvero la validazione del questionario (iv) e il metodo di correlazione tra dati oggettivi e soggettivi (v); calibrazione basata sull'ottimizzazione, utilizzando un approccio multi-level multi-step. Come evidenziato nel Capitolo 1, gli studenti trascorrono più del 30% della loro giornata in classe, da qui l'importanza di valutare e migliorare le condizioni interne degli edifici scolastici. Le condizioni indoor possono essere valutate sia attraverso misure di grandezze fisiche relative ai principali domini sia tramite la somministrazione di questionari. Il capitolo 2 presenta una panoramica dello stato dell'arte della valutazione dell'IEQ mediante questionari e misurazioni. Il capitolo 3 riporta la metodologia innovativa sviluppata durante il mio programma di dottorato. Nella prima parte viene presentato il metodo per valutare le condizioni interne degli edifici scolastici attraverso valutazioni oggettive e soggettive, ovvero rispettivamente misurazioni in campo e questionari. La seconda parte include la procedura basata sull'ottimizzazione per calibrare il modello energetico degli edifici didattici, che esplora la procedura basata sull'ottimizzazione per calibrare il modello energetico di un edificio scolastico dal monitoraggio a breve termine di una porzione di un edificio in periodi selezionati. Il capitolo 4 presenta i casi di studio considerati per l'applicazione delle metodologie. I risultati riportati nel Capitolo 5 sono divisi in tre sezioni: la validazione del questionario (i), la correlazione tra dati oggettivi e soggettivi ´ (ii) e la calibrazione basata sull'ottimizzazione multi-level multi-step (iii). I risultati provenienti dalla validazione del questionario sono suddivisi in tre sottosezioni in base ai tre KPI selezionati, ovvero efficacia, efficienza e risoluzione. Gli esiti della correlazione tra l'indagine soggettiva e i dati oggettivi sono suddivisi in base al diverso tipo di analisi, ovvero single-domain che consiste nell'analizzare la correlazione tra le condizioni ambientali misurate e la risposta soggettiva all'interno dello stesso dominio di comfort, e multi-domain che mira a esplorare gli effetti combinati di diversi domini di comfort. L'ultimo paragrafo presenta i risultati del metodo di calibrazione basato sull'ottimizzazione multilivello multifase applicato a due periodi di monitoraggio, ovvero edificio non occupato con sistema spento e edificio occupato con sistema spento. L'ultimo capitolo riporta le principali conclusioni del lavoro e gli sviluppi futuri della ricerca. Il set di dati raccolto e i metodi rigorosi sviluppati dovrebbero essere considerati come parte di un approccio complesso e replicabile che può fungere da quadro concettuale di base per studi futuri incentrati sulla valutazione dell'IEQ degli edifici scolastici e di altri edifici complessi può essere utilizzato per ulteriori indagini su la valutazione dell'IEQ e del comfort negli edifici scolastici.
Ma, Nuo. "Indoor Human Sensing for Human Building Interaction". Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98916.
Texto completo da fonteMaster of Science
The recent advances in mobile technologies, like smart phones and enhanced wireless communication, allow people to experience added comfort and convenience brought by these devices. For example, smart lighting and air conditioning control can be set remotely, before people arrive at their homes. However, these personal experiences are usually limited to personal spaces and tied to a specific personal smart phone. When it comes to public spaces, we seldom see such technological advancement being utilized. In reality, the concept of smart public spaces is still limited to technologies like opening / closing a door automatically. We discuss the reasons that cause such difference between personal and public spaces. We argue that Human Building Interactions should be shaped around non-intrusive indoor human sensing technologies. We present discussions, considerations and implementation of a system that uses a low cost camera network for indoor human sensing. We also describe several applications based on the developed system. We demonstrate how to bring technology enhanced experiences to public built spaces and provide smart built environments.
Tran, Ngoc Quang. "Optimisation of indoor environmental quality and energy consumption within office buildings". Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/64114/1/Ngoc%20Quang_Tran_Thesis.pdf.
Texto completo da fontePeng, Chiung-Yu. "Identification and quantification of volatile organic compound emissions from buildings and heating, ventilating and air conditioning systems". Ann Arbor, Mich. : University of Michigan, 1998. http://books.google.com/books?id=yxIvAAAAMAAJ.
Texto completo da fonteRAIMONDO, DANIELA. "Indoor and Energy quality assessment in buildings". Doctoral thesis, Politecnico di Torino, 2012. http://hdl.handle.net/11583/2501601.
Texto completo da fonteLivros sobre o assunto "Buildings indoor environments"
IAQ 94 (1994 St. Louis, Mo.). IAQ 94: Engineering indoor environments. Editado por Besch Emerson L e American Society of Heating, Refrigerating and Air-Condtioning Engineers. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1995.
Encontre o texto completo da fonteOrosa, José A. Passive Methods as a Solution for Improving Indoor Environments. London: Springer-Verlag London Limited, 2012.
Encontre o texto completo da fonteIAQ, 96 (1996 Baltimore Md ). IAQ 96: Paths to better building environments. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1996.
Encontre o texto completo da fonteNikolaou, Triantafyllia, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou e Corneliu Munteanu. Managing Indoor Environments and Energy in Buildings with Integrated Intelligent Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21798-7.
Texto completo da fonteGarcia-Jares, Carmen. The role of sorbents in sampling and analysis of emerging pollutants in indoor environments. New York: Nova Science Publishers, 2010.
Encontre o texto completo da fonteGarcía, José A. Orosa. Indoor air ambiences. New York: Nova Science Publishers, 2011.
Encontre o texto completo da fonteSheena, Wilson, ed. Sick building syndrome & environmental conditions: Case studies of nine buildings. London: Building Use Studies Ltd., 1987.
Encontre o texto completo da fonteBas, Ed. Indoor air quality in the building environment. Troy, Mich: Business News Pub., 1993.
Encontre o texto completo da fonteJonas, Nemecek, e Schulz Patrik, eds. Buildings and the environment. Hauppauge, NY, USA: Nova Science Publishers, 2009.
Encontre o texto completo da fonteBienvenido-Huertas, David, e Carlos Rubio-Bellido. Adaptive Thermal Comfort of Indoor Environment for Residential Buildings. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0906-0.
Texto completo da fonteCapítulos de livros sobre o assunto "Buildings indoor environments"
Di Giuseppe, Elisa. "Development of Mould in Indoor Environments". In Nearly Zero Energy Buildings and Proliferation of Microorganisms, 25–35. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02356-4_4.
Texto completo da fonteNikolaou, Triantafyllia, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou e Corneliu Munteanu. "Environmental Rating of Buildings". In Managing Indoor Environments and Energy in Buildings with Integrated Intelligent Systems, 143–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21798-7_5.
Texto completo da fonteNikolaou, Triantafyllia, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou e Corneliu Munteanu. "Detailed Audit and Detailed Case-Study Building Model: Virtual Building Dataset (VBD) for Benchmarking and Classification of Office Buildings". In Managing Indoor Environments and Energy in Buildings with Integrated Intelligent Systems, 51–141. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21798-7_4.
Texto completo da fonteMorey, Philip R. "Mold remediation in North American buildings". In Fundamentals of mold growth in indoor environments and strategies for healthy living, 383–411. Wageningen: Wageningen Academic Publishers, 2011. http://dx.doi.org/10.3920/978-90-8686-722-6_14.
Texto completo da fonteWarscheid, Thomas. "Mold remediation in West-European buildings". In Fundamentals of mold growth in indoor environments and strategies for healthy living, 413–33. Wageningen: Wageningen Academic Publishers, 2011. http://dx.doi.org/10.3920/978-90-8686-722-6_15.
Texto completo da fonteNikolaou, Triantafyllia, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou e Corneliu Munteanu. "Protocol of Alternative Measures for Buildings’ Energy Efficiency Improvement". In Managing Indoor Environments and Energy in Buildings with Integrated Intelligent Systems, 209–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21798-7_7.
Texto completo da fonteSommese, Francesco, e Gigliola Ausiello. "From Nature to Architecture for Low Tech Solutions: Biomimetic Principles for Climate-Adaptive Building Envelope". In The Urban Book Series, 429–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_39.
Texto completo da fonteNikolaou, Triantafyllia, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou e Corneliu Munteanu. "Energy Efficiency in the Built Environment". In Managing Indoor Environments and Energy in Buildings with Integrated Intelligent Systems, 177–208. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21798-7_6.
Texto completo da fonteMainini, Andrea Giovanni, Martina Signorini, Jaroslaw Drozdziel, Aleksander Bartoszewski, Sonia Lupica Spagnolo, Teemu Vesanen, Davide Madeddu et al. "Demonstration in Relevant Environments". In Innovative Tools and Methods Using BIM for an Efficient Renovation in Buildings, 95–119. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04670-4_7.
Texto completo da fontePiecková, Elena. "Indoor Microbial Aerosol and Its Health Effects: Microbial Exposure in Public Buildings – Viruses, Bacteria, and Fungi". In Exposure to Microbiological Agents in Indoor and Occupational Environments, 237–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61688-9_11.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Buildings indoor environments"
Al-Rawahi, Ahmed Khalfan, e Ali Al-Alili. "Indoor Air Quality of an Educational Building and its Effects on Occupants’ Comfort and Performance". In ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/es2017-3601.
Texto completo da fonteGansemer, Sebastian, Uwe Grossmann e Syuzanna Hakobyan. "RSSI-based Euclidean Distance algorithm for indoor positioning adapted for the use in dynamically changing WLAN environments and multi-level buildings". In 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2010. http://dx.doi.org/10.1109/ipin.2010.5648247.
Texto completo da fonteGomes, Maria Idália, e Teresa Miranda. "Indoor air quality for sustainability, occupational health and classroom environments through the application of earth plaster". In HERITAGE2022 International Conference on Vernacular Heritage: Culture, People and Sustainability. Valencia: Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/heritage2022.2022.15142.
Texto completo da fonteSrivastava, Viraj, Yun Gu e David Archer. "Adaptive Control of Indoor Thermal Environments Using Fan Coil Units". In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54292.
Texto completo da fonteChan, Korey, e Saeid Bashash. "Modeling and Energy Cost Optimization of Air Conditioning Loads in Smart Grid Environments". In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5284.
Texto completo da fonteRouth, Tushar, Nurani Saoda, Fateme Nikseresht, Md Fazlay Rabbi Masum Billah, Jiechao Gao, Viswajith Govinda Rajan e Bradford Campbell. "ScreenSense: Screen Activity Detection in Real-World Environments with Indoor Light Sensors". In BuildSys '24: The 11th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 22–32. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3671127.3698167.
Texto completo da fonteMeciarova, Ludmila, Silvia Vilcekova, Eva Kridlova Burdova, Ilija Zoran Apostoloski e Danica Kosicanova. "Short-term Measurements of Indoor Environmental Quality in Selected Offices – Case Study". In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.266.
Texto completo da fonteGreen, William E., Paul Y. Oh, Keith Sevcik e Geoffrey Barrows. "Autonomous Landing for Indoor Flying Robots Using Optic Flow". In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55424.
Texto completo da fonteRickenbacker, Harold J., William O. Collinge, Vaclav Hasik e Melissa M. Bilec. "Indoor Air Quality Assessments of Diverse Buildings in an Energy Conservation District from a Life Cycle Assessment Lens". In BuildSys '16: The 3rd ACM International Conference on Systems for Energy-Efficient Built Environments. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2993422.2993424.
Texto completo da fonteSchwartz, Michael, Cortnee Stainrod e Irin Nizam. "Pedestrian Modeling for Mitigation of Disease Transmission in a Simulated University Environment". In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001358.
Texto completo da fonteRelatórios de organizações sobre o assunto "Buildings indoor environments"
Bogatu, Dragos-Ioan, Emmanuel Bozonnet, Hilde Breesch, Vincenzo Corrado, Patryk Czarnecki, Gamze Gediz Ilis, Peter Holzer et al. International Energy Agency - Resilient Cooling of Buildings - Technology Profiles Report (Annex 80). Editado por Peter Holzer, Philipp Stern e Patryk Czarnecki. Institute of Building Research & Innovation, 2024. http://dx.doi.org/10.52776/hftr4661.
Texto completo da fonteHolzer, Peter. International Energy Agency - Resilient Cooling of Buildings - Project Summary Report (Annex 80). Editado por Philipp Stern e Patryk Czarnecki. Institute of Building Research & Innovation, 2024. http://dx.doi.org/10.52776/kkgb4933.
Texto completo da fonteArnett, Clint, e Rebekah Wilson. Evaluation of a visible light responsive photocatalytic coating to resist microbial contamination and increase indoor air quality. Engineer Research and Development Center (U.S.), setembro de 2023. http://dx.doi.org/10.21079/11681/47644.
Texto completo da fonteZygmunt, Marcin, e Dariusz Gawin. Residents' thermal comfort and energy performance of a single-family house in Poland: a parametric study. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595604.
Texto completo da fonteJohra, Hicham, Markus Schaffer, Gaurav Chaudhary, Hussain Syed Kazmi, Jérôme Le Dréau e Steffen Petersen. Coherent description of 48 metrics to compare, validate and assess accuracy of building energy models and indoor environment simulations. Department of the Built Environment, Aalborg University, junho de 2023. http://dx.doi.org/10.54337/aau533917780.
Texto completo da fonteJohra, Hicham. Thermal properties of common building materials. Department of the Built Environment, Aalborg University, janeiro de 2019. http://dx.doi.org/10.54337/aau294603722.
Texto completo da fontePatil, Sandhya, Prasad Vaidya, Amir Bazaz e Manish Dubey. High Performance Buildings: A Primer. Indian Institute for Human Settlements, 2024. http://dx.doi.org/10.24943/hpbap11.2024.
Texto completo da fonteBjelland, David, e Bozena Dorota Hrynyszyn. Energy retrofitting of non-residential buildings with effects on the indoor environment: a study of university buildings at NTNU in Trondheim, Norway. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541564763.
Texto completo da fonteJohra, Hicham. Thermal properties of building materials - Review and database. Department of the Built Environment, Aalborg University, outubro de 2021. http://dx.doi.org/10.54337/aau456230861.
Texto completo da fonteJohra, Hicham. Assembling temperature sensors: thermocouples and resistance temperature detectors RTD (Pt100). Department of the Built Environment, Aalborg University, dezembro de 2020. http://dx.doi.org/10.54337/aau449755797.
Texto completo da fonte