Literatura científica selecionada sobre o tema "Brain-Computer Interfaces (BCIs)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Brain-Computer Interfaces (BCIs)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Brain-Computer Interfaces (BCIs)"
Berger, Theodore W. "Brain–Computer Interfaces (BCIs)". Journal of Neuroscience Methods 167, n.º 1 (janeiro de 2008): 1. http://dx.doi.org/10.1016/j.jneumeth.2007.10.002.
Texto completo da fonteTang, Feifang, Feiyang Yan, Yushan Zhong, Jinqian Li, Hui Gong e Xiangning Li. "Optogenetic Brain–Computer Interfaces". Bioengineering 11, n.º 8 (12 de agosto de 2024): 821. http://dx.doi.org/10.3390/bioengineering11080821.
Texto completo da fonteNijholt, Anton, e Chang S. Nam. "Arts and Brain-Computer Interfaces (BCIs)". Brain-Computer Interfaces 2, n.º 2-3 (3 de abril de 2015): 57–59. http://dx.doi.org/10.1080/2326263x.2015.1100514.
Texto completo da fonteKlein, Eran, e C. S. Nam. "Neuroethics and brain-computer interfaces (BCIs)". Brain-Computer Interfaces 3, n.º 3 (2 de julho de 2016): 123–25. http://dx.doi.org/10.1080/2326263x.2016.1210989.
Texto completo da fonteMa, Yixin, Anmin Gong, Wenya Nan, Peng Ding, Fan Wang e Yunfa Fu. "Personalized Brain–Computer Interface and Its Applications". Journal of Personalized Medicine 13, n.º 1 (26 de dezembro de 2022): 46. http://dx.doi.org/10.3390/jpm13010046.
Texto completo da fonteColman, Jason, e Paul Gnanayutham. "Accessible Button Interfaces". International Journal of Web-Based Learning and Teaching Technologies 7, n.º 4 (outubro de 2012): 40–52. http://dx.doi.org/10.4018/jwltt.2012100104.
Texto completo da fonteValeriani, Davide, Caterina Cinel e Riccardo Poli. "Brain–Computer Interfaces for Human Augmentation". Brain Sciences 9, n.º 2 (24 de janeiro de 2019): 22. http://dx.doi.org/10.3390/brainsci9020022.
Texto completo da fonteFerreira, Alessandro Luiz Stamatto, Leonardo Cunha de Miranda, Erica Esteves Cunha de Miranda e Sarah Gomes Sakamoto. "A Survey of Interactive Systems based on Brain-Computer Interfaces". Journal on Interactive Systems 4, n.º 1 (28 de agosto de 2013): 1. http://dx.doi.org/10.5753/jis.2013.623.
Texto completo da fonteMikołajewska, Emilia, e Dariusz Mikołajewski. "Ethical considerations in the use of brain-computer interfaces". Open Medicine 8, n.º 6 (1 de dezembro de 2013): 720–24. http://dx.doi.org/10.2478/s11536-013-0210-5.
Texto completo da fonteXu, Jiahong. "Optimizing Brain-Computer Interfaces through Spiking Neural Networks and Memristors". Highlights in Science, Engineering and Technology 85 (13 de março de 2024): 184–90. http://dx.doi.org/10.54097/yk9r3d87.
Texto completo da fonteTeses / dissertações sobre o assunto "Brain-Computer Interfaces (BCIs)"
Botrel, Loic [Verfasser], Andrea [Gutachter] Kübler e Johannes [Gutachter] Hewig. "Brain-computer interfaces (BCIs) based on sensorimotor rhythms - Evaluating practical interventions to improve their performance and reduce BCI inefficiency / Loic Botrel ; Gutachter: Andrea Kübler, Johannes Hewig". Würzburg : Universität Würzburg, 2018. http://d-nb.info/1168146445/34.
Texto completo da fonteYamamoto, Maria Sayu. "Addressing the Large Variability of EEG Data with Riemannian Geometry : Toward Designing Reliable Brain-Computer Interfaces". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG098.
Texto completo da fonteRiemannian geometry-based Brain-Computer Interfaces (BCIs) have gained momentum over the last decade, demonstrating significant improvements in various BCI classification contexts. Despite these advancements, BCI systems remain insufficiently reliable for practical applications. One of the obstacles facing BCIs is the considerable variability of electroencephalogram (EEG). This variability is expected to be even more pronounced when BCI systems are used over multiple days or outside controlled laboratory environments. This thesis tackled the large variability of EEG data from a variety of angles on the Riemannian manifold of symmetric positive definite (SPD) matrices. Our six contributions can be divided into three categories. In the first section, we proposed two approaches to mitigate the variability of intra-user data distribution on an SPD manifold. The first contribution is an automatic outlier detection method based on spectral clustering for EEG SPD matrices, which could detect outliers more accurately than existing methods in a fully data-driven manner. The second contribution proposed a classification model that accounts for multimodal distributions of SPD matrices on a manifold. Our classifier significantly improved accuracy for a highly variable dataset compared to a standard unimodal classifier. The second section tackled inter-user variability by proposing two personalized parameters selection methods. The first method involves dimensionality reduction to project SPD matrices into more class-discriminating low-dimensional subspaces, significantly enhancing classification accuracy from the original high-dimensional space. The second method is a discriminative frequency band and time window selection approach based on class distinctiveness on an SPD manifold. Our selection approach substantially improved classification accuracy over both a baseline without personalized parameters selection and a well-known conventional selection method. In the final section, we focused on designing less variable classification features derived from neurophysiological measurements that have been underutilized in BCI studies. We propose novel SPD matrix representations that exploit multiple cross-frequency coupling as classification features, significantly improving classification accuracy over conventional Riemannian SPD representations. Additionally, we explored the effectiveness of removing a highly variable component of neural signal based on periodic/aperiodic parameterization of EEG signals. This could contribute to the development of neuroscientifically interpretable strategies for addressing large variability in EEG/BCI. Our empirical findings from these six contributions collectively pave the way for algorithm developments that more effectively address significant EEG variability, advancing the design of reliable BCI applications
Mindermann, Björn [Verfasser], Axel [Akademischer Betreuer] Gräser, Axel [Gutachter] Gräser e Canan [Gutachter] Basar-Eroglu. "Untersuchung eines hybriden Brain-Computer Interfaces (BCIs) zur optimalen Auslegung als Mensch-Maschine-Schnittstelle / Björn Mindermann ; Gutachter: Axel Gräser, Canan Basar-Eroglu ; Betreuer: Axel Gräser". Bremen : Staats- und Universitätsbibliothek Bremen, 2018. http://d-nb.info/1159699917/34.
Texto completo da fonteBhalotiya, Anuj Arun. "Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984122/.
Texto completo da fontePetrucci, Maila. "Sistemi Brain Computer Interface: dalla macchina al paziente". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10137/.
Texto completo da fonteDel, Monte Tamara. "Utilizzo dell'elettroencefalografia per la brain-computer interface". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9220/.
Texto completo da fonteJeunet, Camille. "Understanding & Improving Mental-Imagery Based Brain-Computer Interface (Mi-Bci) User-Training : towards A New Generation Of Reliable, Efficient & Accessible Brain- Computer Interfaces". Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0221/document.
Texto completo da fonteMental-imagery based brain-computer interfaces (MI-BCIs) enable users to interact with theirenvironment using their brain-activity alone, by performing mental-imagery tasks. This thesisaims to contribute to the improvement of MI-BCIs in order to render them more usable. MIBCIsare bringing innovative prospects in many fields, ranging from stroke rehabilitation tovideo games. Unfortunately, most of the promising MI-BCI based applications are not yetavailable on the public market since an estimated 15 to 30% of users seem unable to controlthem. A lot of research has focused on the improvement of signal processing algorithms.However, the potential role of user training in MI-BCI performance seems to be mostlyneglected. Controlling an MI-BCI requires the acquisition of specific skills, and thus anappropriate training procedure. Yet, although current training protocols have been shown tobe theoretically inappropriate, very little research is done towards their improvement. Our mainobject is to understand and improve MI-BCI user-training. Thus, first we aim to acquire a betterunderstanding of the processes underlying MI-BCI user-training. Next, based on thisunderstanding, we aim at improving MI-BCI user-training so that it takes into account therelevant psychological and cognitive factors and complies with the principles of instructionaldesign. Therefore, we defined 3 research axes which consisted in investigating the impact of(1) cognitive factors, (2) personality and (3) feedback on MI-BCI performance. For each axis,we first describe the studies that enabled us to determine which factors impact MI-BCIperformance; second, we describe the design and validation of new training approaches; thethird part is dedicated to future work. Finally, we propose a solution that could enable theinvestigation of MI-BCI user-training using a multifactorial and dynamic approach: an IntelligentTutoring System
Sicbaldi, Marcello. "Brain-Computer Interface per riabilitazione motoria e cognitiva". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18556/.
Texto completo da fonteJUBIEN, Guillaume. "Decoding Electrocorticography Signals by Deep Learning for Brain-Computer Interface". Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243903.
Texto completo da fonteBodranghien, Florian. "A novel brain-computer interface (BCI) to assist upper limb pointing movements". Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/261534.
Texto completo da fonteCommuniquer avec un ordinateur par le biais de la pensée n'est plus un sujet de science-fiction et les progrès effectués dans le domaine sont ahurissants. Ce travail montre la création d'une nouvelle plateforme de mesure de la performance des mouvements de pointage verticaux (eCAM test) ainsi que sa validation sur une cohorte de sujets sains. Suite à cela, il montre que la stimulation électrique fonctionnelle (FES) améliore la performance de ces mouvements des membres supérieurs. En plus il démontre que la stimulation anodale trancranienne en courant continu (atDCS) du cervelet a un effet sur les rythmes des signaux cérébraux ainsi que sur le tremblement postural d'un patient. De plus des données IRM recueillies durant ce travail permettront de mieux cerner les mécanismes d'action de la stimulation tDCS. Suite à cela, il a été montré que la fréquence et la complexité d'une tâche de tapping augmentent le tremblement postural du membre controlatéral. Le même effet est constaté pour la fatigue musculaire. Toutes ces avancées installent les fondements à la création d'une interface cerveau-machine multimodale basée sur la fusion de senseurs. Une phase de développement est maintenant nécessaire pour établir cette interface et la tester sur des sujets sains et malades.
Doctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Livros sobre o assunto "Brain-Computer Interfaces (BCIs)"
Pfurtscheller, Gert, Clemens Brunner e Christa Neuper. EEG-Based Brain–Computer Interfaces. Editado por Donald L. Schomer e Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0047.
Texto completo da fonteKlein, Eran. Neuromodulation ethics: Preparing for brain–computer interface medicine. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198786832.003.0007.
Texto completo da fontePaszkiel, Szczepan, e Wojciech P. Hunek. Biomedical Engineering and Neuroscience: Proceedings of the 3rd International Scientific Conference on Brain-Computer Interfaces, BCI 2018, March ... in Intelligent Systems and Computing). Springer, 2018.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Brain-Computer Interfaces (BCIs)"
Allison, Brendan Z. "Toward Ubiquitous BCIs". In Brain-Computer Interfaces, 357–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_19.
Texto completo da fonteBotti Benevides, Alessandro, Mario Sarcinelli-Filho e Teodiano Freire Bastos-Filho. "Brain–Computer Interfaces (BCIs)". In Introduction to Non-Invasive EEG-Based Brain–Computer Interfaces for Assistive Technologies, 51–60. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003049159-2.
Texto completo da fonteGunduz, Aysegul, e Gerwin Schalk. "ECoG-Based BCIs". In Brain–Computer Interfaces Handbook, 297–322. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954-16.
Texto completo da fonteFlamary, Rémi, Alain Rakotomamonjy e Michèle Sebag. "Statistical Learning for BCIs". In Brain-Computer Interfaces 1, 185–205. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119144977.ch9.
Texto completo da fonteJayaram, Vinay, Karl-Heinz Fiebig, Jan Peters e Moritz Grosse-Wentrup. "Transfer Learning for BCIs". In Brain–Computer Interfaces Handbook, 425–42. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954-22.
Texto completo da fonteTaylor, Dawn M. "Functional Electrical Stimulation and Rehabilitation Applications of BCIs". In Brain-Computer Interfaces, 81–94. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8705-9_6.
Texto completo da fonteTaylor, Dawn M., e Michael E. Stetner. "Intracortical BCIs: A Brief History of Neural Timing". In Brain-Computer Interfaces, 203–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_12.
Texto completo da fonteMüller-Putz, Gernot R., Reinhold Scherer, Gert Pfurtscheller e Rüdiger Rupp. "Non Invasive BCIs for Neuroprostheses Control of the Paralysed Hand". In Brain-Computer Interfaces, 171–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_10.
Texto completo da fonteHuggins, Jane E. "BCIs Based on Signals from Between the Brain and Skull". In Brain-Computer Interfaces, 221–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_13.
Texto completo da fonteCabestaing, François, e Louis Mayaud. "Medical Applications of BCIs for Patient Communication". In Brain-Computer Interfaces 2, 43–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119332428.ch3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Brain-Computer Interfaces (BCIs)"
Pal, Saptarsi, Shreyansh Mishra, Ajay Kumar, Utkarsh Tiwari e Mahesh Kumar Singh. "Enhancing Brain Signal Acquisition in Brain-Computer Interfaces (BCIs)". In 2024 2nd International Conference on Disruptive Technologies (ICDT). IEEE, 2024. http://dx.doi.org/10.1109/icdt61202.2024.10489212.
Texto completo da fonteWolpaw, Jonathan R. "Brain-computer interfaces (BCIs) for communication and control". In the 9th international ACM SIGACCESS conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1296843.1296845.
Texto completo da fonteYakovlev, Lev, Artemiy Berkmush Antipova, Nikolay Syrov, Maksimov Iaroslav, Daria Petrova, Matvey Bulat, Mikhail Lebedev e Alexander Kaplan. "The effects of tactile stimulation and its imagery on sensorimotor EEG rhythms: incorporating somatic sensations in brain-computer interfaces". In 8th International Conference on Human Interaction and Emerging Technologies. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002765.
Texto completo da fonteAl-Serkal, Abdulla, Nooruldeen Almohammed, Ahmad Qusai e Jinane Mounsef. "EEG-Based Cognitive Digit Perception for Brain-Computer Interfaces (BCIs)". In 2023 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT). IEEE, 2023. http://dx.doi.org/10.1109/gcaiot61060.2023.10385095.
Texto completo da fonteСметана, Владимир Васильевич. "BRAIN-COMPUTER INTERFACES (BCI) AND THE PHILOSOPHICAL HORIZONS OF DIGITAL IMMORTALITY". In Перспективные исследования: теория и практика: сборник статей международной научной конференции (Санкт-Петербург, Сентябрь 2024), 27–32. Crossref, 2024. http://dx.doi.org/10.58351/240903.2024.32.84.003.
Texto completo da fonteHeilala, Janne. "Bio-AI Metaverse Integration: Fusion of Surgical and Aerospace Engineering". In Intelligent Human Systems Integration (IHSI 2024) Integrating People and Intelligent Systems. AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004525.
Texto completo da fonteVieites Pérez, Pelayo, Adriana Dapena e Francisco Laport. "Open Source Simulator of a Control System Based on EEG Signals". In VII Congreso XoveTIC: impulsando el talento científico, 73–80. Servizo de Publicacións. Universidade da Coruña, 2024. https://doi.org/10.17979/spudc.9788497498913.11.
Texto completo da fonteManuri, Federico, Andrea Sanna, Matteo Bosco e Francesco De Pace. "A Comparison of Three Different NeuroTag Visualization Media: Brain Visual Stimuli by Monitor, Augmented and Virtual Reality Devices". In 8th International Conference on Human Interaction and Emerging Technologies. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002726.
Texto completo da fonteIbarra Chaoul, Andrea, e Moritz Grosse-Wentrup. "Is breathing rate a confounding variable in brain-computer interfaces (BCIs) based on EEG spectral power?" In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7318552.
Texto completo da fonteFloreani, Erica Danielle, e Tom Chau. "Towards Privacy Preserving BCIs: Profiling the Feasibility of Federated Learning for Motor Imagery Brain-Computer Interfaces". In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023. http://dx.doi.org/10.1109/smc53992.2023.10394136.
Texto completo da fonteRelatórios de organizações sobre o assunto "Brain-Computer Interfaces (BCIs)"
Potter, Michael, e Lydia Harriss. Brain-computer interfaces. Parliamentary Office of Science and Technology, fevereiro de 2020. http://dx.doi.org/10.58248/pn614.
Texto completo da fonte