Siga este link para ver outros tipos de publicações sobre o tema: Boundary layer.

Artigos de revistas sobre o tema "Boundary layer"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Boundary layer".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Bösenberg, Jens, e Holger Linné. "Laser remote sensing of the planetary boundary layer". Meteorologische Zeitschrift 11, n.º 4 (30 de outubro de 2002): 233–40. http://dx.doi.org/10.1127/0941-2948/2002/0011-0233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chlond, Andreas, e Hartmut Grassl. "The atmospheric boundary layer". Meteorologische Zeitschrift 11, n.º 4 (30 de outubro de 2002): 227. http://dx.doi.org/10.1127/0941-2948/2002/0011-0227.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Holloway, Simon, Hugo Ricketts e Geraint Vaughan. "Boundary layer temperature measurements of a noctual urban boundary layer". EPJ Web of Conferences 176 (2018): 06004. http://dx.doi.org/10.1051/epjconf/201817606004.

Texto completo da fonte
Resumo:
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mamtaz, Farhana, Ahammad Hossain e Nusrat Sharmin. "Solution of Boundary Layer and Thermal Boundary Layer Equation". Asian Research Journal of Mathematics 11, n.º 4 (19 de dezembro de 2018): 1–15. http://dx.doi.org/10.9734/arjom/2018/45267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kenyon, Kern E. "Curvature Boundary Layer". Physics Essays 16, n.º 1 (março de 2003): 74–85. http://dx.doi.org/10.4006/1.3025569.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Vranková, Andrea, e Milan Palko. "Atmospheric Boundary Layer". Applied Mechanics and Materials 820 (janeiro de 2016): 338–44. http://dx.doi.org/10.4028/www.scientific.net/amm.820.338.

Texto completo da fonte
Resumo:
Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere. The main feature of the Atmospheric Boundary Layer is the turbulent nature of the flow. The thickness of the boundary layer, formed by flowing air friction on the earth’s surface under various conditions move in quite a wide range. ABL is generally defined as being 0.5 km above the surface, although it can extend up to 2 km depending on time and location. The flow properties are most important over the surface of solid objects, which carry out all the reactions between fluid and solid.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Müller, Bernhard M. "Boundary‐layer microphone". Journal of the Acoustical Society of America 96, n.º 5 (novembro de 1994): 3206. http://dx.doi.org/10.1121/1.411273.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Piau, J. M. "Viscoplastic boundary layer". Journal of Non-Newtonian Fluid Mechanics 102, n.º 2 (fevereiro de 2002): 193–218. http://dx.doi.org/10.1016/s0377-0257(01)00178-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Fernholz, H. H. "Boundary Layer Theory". European Journal of Mechanics - B/Fluids 20, n.º 1 (janeiro de 2001): 155–57. http://dx.doi.org/10.1016/s0997-7546(00)01101-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Cha, S. S., R. K. Ahluwalia e K. H. Im. "Boundary layer nucleation". International Journal of Heat and Mass Transfer 32, n.º 5 (maio de 1989): 825–35. http://dx.doi.org/10.1016/0017-9310(89)90231-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Bahl, Ravi. "Boundary-layer blowing". AIAA Journal 23, n.º 1 (janeiro de 1985): 157–58. http://dx.doi.org/10.2514/3.8887.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Koizumi, David H. "Boundary layer microphone". Journal of the Acoustical Society of America 113, n.º 2 (2003): 683. http://dx.doi.org/10.1121/1.1560240.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Schmidt, Axel, e Michael Nickel. "Boundary layer adapter". Journal of the Acoustical Society of America 128, n.º 4 (2010): 2252. http://dx.doi.org/10.1121/1.3500761.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Garratt, J. R. "Boundary layer climates". Earth-Science Reviews 27, n.º 3 (maio de 1990): 265. http://dx.doi.org/10.1016/0012-8252(90)90005-g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Holtslag, Bert. "Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers". Boundary-Layer Meteorology 118, n.º 2 (fevereiro de 2006): 243–46. http://dx.doi.org/10.1007/s10546-005-9008-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Donnelly, M. J., O. K. Rediniotis, S. A. Ragab e D. P. Telionis. "The Interaction of Rolling Vortices With a Turbulent Boundary Layer". Journal of Fluids Engineering 117, n.º 4 (1 de dezembro de 1995): 564–70. http://dx.doi.org/10.1115/1.2817302.

Texto completo da fonte
Resumo:
Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Taylor, Peter A. "Marine Stratus—A Boundary-Layer Model". Atmosphere 15, n.º 5 (11 de maio de 2024): 585. http://dx.doi.org/10.3390/atmos15050585.

Texto completo da fonte
Resumo:
A relatively simple 1D RANS model of the time evolution of the planetary boundary layer is extended to include water vapor and cloud droplets plus transfers between them. Radiative fluxes and flux divergence are also included. An underlying ocean surface is treated as a source of water vapor and as a sink for cloud or fog droplets. With a constant sea surface temperature and a steady wind, initially dry or relatively dry air will moisten, starting at the surface. Turbulent boundary layer mixing will then lead towards a layer with a well-mixed potential temperature (and so temperature decreasing with height) and well-mixed water vapor mixing ratio. As a result, the air will, sooner or later, become saturated at some level, and a stratus cloud will form.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Fabian, Peter, Bernhard Rappenglück, Andreas Stohl, Herbert Werner, Martin Winterhalter, Hans Schlager, Paul Stock et al. "Boundary layer photochemistry during a total solar eclipse". Meteorologische Zeitschrift 10, n.º 3 (1 de maio de 2001): 187–92. http://dx.doi.org/10.1127/0941-2948/2001/0010-0187.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Carpenter, D. L., e J. Lemaire. "The Plasmasphere Boundary Layer". Annales Geophysicae 22, n.º 12 (22 de dezembro de 2004): 4291–98. http://dx.doi.org/10.5194/angeo-22-4291-2004.

Texto completo da fonte
Resumo:
Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities)
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Iamandi, Constantin, Andrei Georgescu e Cristian Erbasu. "Atmospheric Boundary Layer Change". International Journal of Fluid Mechanics Research 29, n.º 3-4 (2002): 5. http://dx.doi.org/10.1615/interjfluidmechres.v29.i3-4.170.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Vranková, Andrea, e Milan Palko. "Atmospheric Boundary Layer Modelling". Applied Mechanics and Materials 820 (janeiro de 2016): 351–58. http://dx.doi.org/10.4028/www.scientific.net/amm.820.351.

Texto completo da fonte
Resumo:
The aim of the paper was to define the input options over the boundary layer, as the entrance boundary conditions for simulation in ANSYS. The boundary layer is designed for use in external aerodynamics of buildings (part of the urban structure) for selected sites occurring in the territory of the Slovak Republic.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Donner, L. J. "The atmospheric boundary layer". Eos, Transactions American Geophysical Union 76, n.º 17 (1995): 177. http://dx.doi.org/10.1029/95eo00101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Hiraoka, H., M. Ohashi, Susumu Kurita, Manabu Kanda, Takashi Karasudani, Hiromasa Ueda, Yuji Ohya e Takanori Uchida. "TC4 Atmospheric Boundary Layer". Wind Engineers, JAWE 2006, n.º 108 (2006): 693–708. http://dx.doi.org/10.5359/jawe.2006.693.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

BLOTTNER, F. G. "Chemical Nonequilibrium Boundary Layer". Journal of Spacecraft and Rockets 40, n.º 5 (setembro de 2003): 810–18. http://dx.doi.org/10.2514/2.6907.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Swain, Mark R., e Hubert Gallée. "Antarctic Boundary Layer Seeing". Publications of the Astronomical Society of the Pacific 118, n.º 846 (agosto de 2006): 1190–97. http://dx.doi.org/10.1086/507153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Anderson, John D. "Ludwig Prandtl’s Boundary Layer". Physics Today 58, n.º 12 (dezembro de 2005): 42–48. http://dx.doi.org/10.1063/1.2169443.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Kerschen, E. J. "Boundary Layer Receptivity Theory". Applied Mechanics Reviews 43, n.º 5S (1 de maio de 1990): S152—S157. http://dx.doi.org/10.1115/1.3120795.

Texto completo da fonte
Resumo:
The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in the theoretical understanding of these phenomena.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bridges, Thomas J., e Philip J. Morris. "Boundary layer stability calculations". Physics of Fluids 30, n.º 11 (1987): 3351. http://dx.doi.org/10.1063/1.866467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Esplin, G. J. "Boundary Layer Emission Monitoring". JAPCA 38, n.º 9 (setembro de 1988): 1158–61. http://dx.doi.org/10.1080/08940630.1988.10466465.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Mahrt, L. "Nocturnal Boundary-Layer Regimes". Boundary-Layer Meteorology 88, n.º 2 (agosto de 1998): 255–78. http://dx.doi.org/10.1023/a:1001171313493.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Trowbridge, John H., e Steven J. Lentz. "The Bottom Boundary Layer". Annual Review of Marine Science 10, n.º 1 (3 de janeiro de 2018): 397–420. http://dx.doi.org/10.1146/annurev-marine-121916-063351.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Arav, Nahum, e Mitchell C. Begelman. "Radiation-viscous boundary layer". Astrophysical Journal 401 (dezembro de 1992): 125. http://dx.doi.org/10.1086/172045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Cheskidov, Alexey. "Turbulent boundary layer equations". Comptes Rendus Mathematique 334, n.º 5 (janeiro de 2002): 423–27. http://dx.doi.org/10.1016/s1631-073x(02)02275-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

BOTTARO, ALESSANDRO. "A ‘receptive’ boundary layer". Journal of Fluid Mechanics 646 (8 de março de 2010): 1–4. http://dx.doi.org/10.1017/s0022112009994228.

Texto completo da fonte
Resumo:
Receptivity is the process which describes how environmental disturbances (such as gusts, acoustic waves or wall roughness) are filtered by a boundary layer and turned into downstream-growing waves. It is closely related to the identification of initial conditions for the disturbances and requires knowledge of the characteristics of the specific external forcing field. Without such a knowledge, it makes sense to focus on worst case scenarios and search for those initial states which maximize the disturbance amplitude at a given downstream position, and hence to identify upper bounds on growth rates, which will be useful in predicting the transition to turbulence. This philosophical approach has been taken by Tempelmann, Hanifi & Henningson (J. Fluid Mech., 2010, vol. 646, pp. 5–37) in a remarkably complete parametric study of ‘optimal disturbances’ for a model of the flow over a swept wing; they pinpoint the crucial importance both of the spatial variation of the flow and of non-modal disturbances, even when the flow is ‘supercritical’ and hence subject to classical ‘normal mode’ instabilities.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Bénech, B. "The atmospheric boundary layer". Atmospheric Research 29, n.º 3-4 (maio de 1993): 286–87. http://dx.doi.org/10.1016/0169-8095(93)90017-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Durand, Pierre. "Atmospheric boundary layer flows". Atmospheric Research 41, n.º 2 (julho de 1996): 177–78. http://dx.doi.org/10.1016/0169-8095(95)00045-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

King, J. C. "The atmospheric boundary layer". Dynamics of Atmospheres and Oceans 18, n.º 1-2 (junho de 1993): 115–16. http://dx.doi.org/10.1016/0377-0265(93)90006-s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

De Keyser, J., M. W. Dunlop, C. J. Owen, B. U. Ö. Sonnerup, S. E. Haaland, A. Vaivads, G. Paschmann, R. Lundin e L. Rezeau. "Magnetopause and Boundary Layer". Space Science Reviews 118, n.º 1-4 (junho de 2005): 231–320. http://dx.doi.org/10.1007/s11214-005-3834-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Simpson, R. L. "Turbulent Boundary-Layer Separation". Annual Review of Fluid Mechanics 21, n.º 1 (janeiro de 1989): 205–32. http://dx.doi.org/10.1146/annurev.fl.21.010189.001225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Wu, Xiaohua, Parviz Moin e Jean-Pierre Hickey. "Boundary layer bypass transition". Physics of Fluids 26, n.º 9 (setembro de 2014): 091104. http://dx.doi.org/10.1063/1.4893454.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Xu, Qin, e Wei Gu. "Semigeostrophic Frontal Boundary Layer". Boundary-Layer Meteorology 104, n.º 1 (julho de 2002): 99–110. http://dx.doi.org/10.1023/a:1015565624074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Businger, J. A. "The atmospheric boundary layer". Earth-Science Reviews 34, n.º 4 (agosto de 1993): 283–84. http://dx.doi.org/10.1016/0012-8252(93)90069-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Hobbs, S. E. "The atmospheric boundary layer". Journal of Atmospheric and Terrestrial Physics 57, n.º 3 (março de 1995): 322. http://dx.doi.org/10.1016/0021-9169(95)90026-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ostermeyer, Georg-Peter, Thomas Vietor, Michael Müller, David Inkermann, Johannes Otto e Hendrik Lembeck. "The Boundary Layer Machine". PAMM 17, n.º 1 (dezembro de 2017): 159–60. http://dx.doi.org/10.1002/pamm.201710049.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Mahrt, L. "Boundary-layer moisture regimes". Quarterly Journal of the Royal Meteorological Society 117, n.º 497 (janeiro de 1991): 151–76. http://dx.doi.org/10.1002/qj.49711749708.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Smith, Roger K., e Michael T. Montgomery. "Hurricane boundary-layer theory". Quarterly Journal of the Royal Meteorological Society 136, n.º 652 (outubro de 2010): 1665–70. http://dx.doi.org/10.1002/qj.679.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Anderson, E. J., W. R. McGillis e M. A. Grosenbaugh. "The boundary layer of swimming fish". Journal of Experimental Biology 204, n.º 1 (1 de janeiro de 2001): 81–102. http://dx.doi.org/10.1242/jeb.204.1.81.

Texto completo da fonte
Resumo:
Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout complete undulatory cycles of their propulsive motions. The Reynolds number based on length, Re, ranged from 3×10(3) to 3×10(5). In general, boundary layer profiles were found to match known laminar and turbulent profiles including those of Blasius, Falkner and Skan and the law of the wall. In still water, boundary layer profile shape always suggested laminar flow. In flowing water, boundary layer profile shape suggested laminar flow at lower Reynolds numbers and turbulent flow at the highest Reynolds numbers. In some cases, oscillation between laminar and turbulent profile shapes with body phase was observed. Local friction coefficients, boundary layer thickness and fluid velocities at the edge of the boundary layer were suggestive of local oscillatory and mean streamwise acceleration of the boundary layer. The behavior of these variables differed significantly in the boundary layer over a rigid fish. Total skin friction was determined. Swimming fish were found to experience greater friction drag than the same fish stretched straight in the flow. Nevertheless, the power necessary to overcome friction drag was determined to be within previous experimentally measured power outputs. No separation of the boundary layer was observed around swimming fish, suggesting negligible form drag. Inflected boundary layers, suggestive of incipient separation, were observed sporadically, but appeared to be stabilized at later phases of the undulatory cycle. These phenomena may be evidence of hydrodynamic sensing and response towards the optimization of swimming performance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kuntz, D. W., V. A. Amatucci e A. L. Addy. "Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction". AIAA Journal 25, n.º 5 (maio de 1987): 668–75. http://dx.doi.org/10.2514/3.9681.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

S. S. PARASNIS, M. K. KULKARNI e J. S. PILLAI. "Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model". Journal of Agrometeorology 3, n.º 1-2 (1 de setembro de 2001): 261–66. http://dx.doi.org/10.54386/jam.v3i1-2.411.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Manisha Patel, Hema Surati e M. G. Timol. "Extension of Blasius Newtonian Boundary Layer to Blasius Non-Newtonian Boundary Layer". Mathematical Journal of Interdisciplinary Sciences 9, n.º 2 (8 de junho de 2021): 35–41. http://dx.doi.org/10.15415/mjis.2021.92004.

Texto completo da fonte
Resumo:
Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia