Siga este link para ver outros tipos de publicações sobre o tema: Boundary element methods.

Artigos de revistas sobre o tema "Boundary element methods"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Boundary element methods".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Nedelec, Jean-Claude, Goong Chen e Jianxin Zhou. "Boundary Element Methods." Mathematics of Computation 60, n.º 202 (abril de 1993): 851. http://dx.doi.org/10.2307/2153130.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chaillat-Loseille, Stéphanie, Ralf Hiptmair e Olaf Steinbach. "Boundary Element Methods". Oberwolfach Reports 17, n.º 1 (9 de fevereiro de 2021): 273–376. http://dx.doi.org/10.4171/owr/2020/5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Feischl, Michael, Thomas Führer, Norbert Heuer, Michael Karkulik e Dirk Praetorius. "Adaptive Boundary Element Methods". Archives of Computational Methods in Engineering 22, n.º 3 (27 de junho de 2014): 309–89. http://dx.doi.org/10.1007/s11831-014-9114-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Khoromskij, B. N., e J. M. Melenk. "Boundary Concentrated Finite Element Methods". SIAM Journal on Numerical Analysis 41, n.º 1 (janeiro de 2003): 1–36. http://dx.doi.org/10.1137/s0036142901391852.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Beskos, D. E., e U. Heise. "Boundary Element Methods in Mechanics". Journal of Applied Mechanics 55, n.º 4 (1 de dezembro de 1988): 997. http://dx.doi.org/10.1115/1.3173761.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bonnet, Marc, Giulio Maier e Castrenze Polizzotto. "Symmetric Galerkin Boundary Element Methods". Applied Mechanics Reviews 51, n.º 11 (1 de novembro de 1998): 669–704. http://dx.doi.org/10.1115/1.3098983.

Texto completo da fonte
Resumo:
This review article concerns a methodology for solving numerically, for engineering purposes, boundary and initial-boundary value problems by a peculiar approach characterized by the following features: the continuous formulation is centered on integral equations based on the combined use of single-layer and double-layer sources, so that the integral operator turns out to be symmetric with respect to a suitable bilinear form. The discretization is performed either on a variational basis or by a Galerkin weighted residual procedure, the interpolation and weight functions being chosen so that the variables in the approximate formulation are generalized variables in Prager’s sense. As main consequences of the above provisions, symmetry is exhibited by matrices with a key role in the algebraized versions; some quadratic forms have a clear energy meaning; variational properties characterize the solutions and other results, invalid in traditional boundary element methods enrich the theory underlying the computational applications. The present survey outlines recent theoretical and computational developments of the title methodology with particular reference to linear elasticity, elastoplasticity, fracture mechanics, time-dependent problems, variational approaches, singular integrals, approximation issues, sensitivity analysis, coupling of boundary and finite elements, and computer implementations. Areas and aspects which at present require further research are identified, and comparative assessments are attempted with respect to traditional boundary integral-elements. This article includes 176 references.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Costabel, Martin. "Principles of boundary element methods". Computer Physics Reports 6, n.º 1-6 (agosto de 1987): 243–74. http://dx.doi.org/10.1016/0167-7977(87)90014-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hsiao, George C. "Boundary element methods—An overview". Applied Numerical Mathematics 56, n.º 10-11 (outubro de 2006): 1356–69. http://dx.doi.org/10.1016/j.apnum.2006.03.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Faust, G., e J. Szimmat. "Developments in boundary element methods". Computer Methods in Applied Mechanics and Engineering 60, n.º 2 (fevereiro de 1987): 253–54. http://dx.doi.org/10.1016/0045-7825(87)90112-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Faermann, Birgit. "Adaptive galerkin boundary element methods". ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 78, S3 (1998): 909–10. http://dx.doi.org/10.1002/zamm.19980781527.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Phan, Thanh Xuan, e Olaf Steinbach. "Boundary element methods for parabolic boundary control problems". Journal of Integral Equations and Applications 26, n.º 1 (março de 2014): 53–90. http://dx.doi.org/10.1216/jie-2014-26-1-53.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Betcke, Timo, Erik Burman e Matthew W. Scroggs. "Boundary Element Methods with Weakly Imposed Boundary Conditions". SIAM Journal on Scientific Computing 41, n.º 3 (janeiro de 2019): A1357—A1384. http://dx.doi.org/10.1137/18m119625x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Of, Günther, Thanh Xuan Phan e Olaf Steinbach. "Boundary element methods for Dirichlet boundary control problems". Mathematical Methods in the Applied Sciences 33, n.º 18 (19 de setembro de 2010): 2187–205. http://dx.doi.org/10.1002/mma.1356.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Beskos, Dimitri E. "Boundary Element Methods in Dynamic Analysis". Applied Mechanics Reviews 40, n.º 1 (1 de janeiro de 1987): 1–23. http://dx.doi.org/10.1115/1.3149529.

Texto completo da fonte
Resumo:
A review of boundary element methods for the numerical solution of dynamic problems of linear elasticity is presented. The integral formulation and the corresponding numerical solution of three- and two-dimensional elastodynamics from the direct boundary element method viewpoint and in both the frequency and time domains are described. The special case of the anti-plane motion governed by the scalar wave equation is also considered. In all the cases both harmonic and transient dynamic disturbances are taken into account. Special features of material behavior such as viscoelasticity, inhomogeneity, anisotropy, and poroelasticity are briefly discussed. Some other nonconventional boundary element methods as well as the hybrid scheme that results from the combination of boundary and finite elements are also reviewed. All these boundary element methodologies are applied to: soil-structure interaction problems that include the dynamic analysis of underground and above-ground structures, foundations, piles, and vibration isolation devices; problems of crack propagation and wave diffraction by cracks; and problems dealing with the dynamics of beams, plates, and shells. Finally, a brief assessment of the progress achieved so far in dynamic analysis is made and areas where further research is needed are identified.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Liu, Shaolin, Dinghui Yang, Xingpeng Dong, Qiancheng Liu e Yongchang Zheng. "Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling". Solid Earth 8, n.º 5 (28 de setembro de 2017): 969–86. http://dx.doi.org/10.5194/se-8-969-2017.

Texto completo da fonte
Resumo:
Abstract. The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency–wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Utzinger, Helmut Harbrecht and Manuela. "On Adaptive Wavelet Boundary Element Methods". Journal of Computational Mathematics 36, n.º 1 (junho de 2018): 90–109. http://dx.doi.org/10.4208/jcm.1610-m2016-0496.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Aliabadi, M. H. "Boundary Element Methods for Crack Dynamics". Key Engineering Materials 145-149 (outubro de 1997): 323–28. http://dx.doi.org/10.4028/www.scientific.net/kem.145-149.323.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Carstensen, Carsten, e Dirk Praetorius. "Convergence of adaptive boundary element methods". Journal of Integral Equations and Applications 24, n.º 1 (março de 2012): 1–23. http://dx.doi.org/10.1216/jie-2012-24-1-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Ohl, Siew-Wan, Md Haiqal Haqim Bin Md. Rahim, Evert Klaseboer e Boo Cheong Khoo. "Blake, bubbles and boundary element methods". IMA Journal of Applied Mathematics 85, n.º 2 (18 de dezembro de 2019): 190–213. http://dx.doi.org/10.1093/imamat/hxz032.

Texto completo da fonte
Resumo:
Abstract Professor John Blake spent a considerable part of his scientific career on studying bubble dynamics and acoustic cavitation. As Blake was a mathematician, we will be focusing on the theoretical and numerical studies (and much less on experimental results). Rather than repeating what is essentially already known, we will try to present the results from a different perspective as much as possible. This review will also be of interest for readers who wish to know more about the boundary element method in general, which is a method often used by Blake and his colleagues to simulate bubbles. We will, however, not limit the discussion to bubble dynamics but try to give a broad discussion on recent advances and improvements to this method, especially for potential problems (Laplace) and wave equations (Helmholtz). Based on examples from Blake’s work, we will guide the reader and show some of the mysteries of bubble dynamics, such as why jets form in collapsing bubbles near rigid surfaces. Where appropriate, we will illustrate the concepts with examples drawn from numerical simulations and experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tausch, Johannes. "Equivariant Preconditioners for Boundary Element Methods". SIAM Journal on Scientific Computing 17, n.º 1 (janeiro de 1996): 90–99. http://dx.doi.org/10.1137/0917008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Gaul, Lothar, Marcus Wagner e Wolfgang Wenzel. "Teaching boundary element methods in acoustics". Journal of the Acoustical Society of America 105, n.º 2 (fevereiro de 1999): 1123. http://dx.doi.org/10.1121/1.425242.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Syngellakis, Stavros. "Boundary element methods for polymer analysis". Engineering Analysis with Boundary Elements 27, n.º 2 (fevereiro de 2003): 125–35. http://dx.doi.org/10.1016/s0955-7997(02)00090-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Wu, J. "Fundamental solutions and boundary element methods". Engineering Analysis with Boundary Elements 4, n.º 1 (março de 1987): 2–6. http://dx.doi.org/10.1016/0955-7997(87)90013-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Portela, A. "Stress analysis by boundary element methods". Engineering Analysis with Boundary Elements 9, n.º 2 (janeiro de 1992): 189–90. http://dx.doi.org/10.1016/0955-7997(92)90063-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Martin, P. A. "Maurice Jaswon and boundary element methods". Engineering Analysis with Boundary Elements 36, n.º 11 (novembro de 2012): 1699–704. http://dx.doi.org/10.1016/j.enganabound.2012.05.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ylä-Oijala, Pasi, Sami P. Kiminki e Seppo Järvenpää. "Conforming boundary element methods in acoustics". Engineering Analysis with Boundary Elements 50 (janeiro de 2015): 447–58. http://dx.doi.org/10.1016/j.enganabound.2014.10.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Feischl, Michael, Gregor Gantner, Alexander Haberl e Dirk Praetorius. "Adaptive 2D IGA boundary element methods". Engineering Analysis with Boundary Elements 62 (janeiro de 2016): 141–53. http://dx.doi.org/10.1016/j.enganabound.2015.10.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Allgower, Eugene L., Klaus Böhmer, Kurt Georg e Rick Miranda. "Exploiting Symmetry in Boundary Element Methods". SIAM Journal on Numerical Analysis 29, n.º 2 (abril de 1992): 534–52. http://dx.doi.org/10.1137/0729034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wu, J. C. "Fundamental solutions and boundary element methods". Engineering Analysis 4, n.º 1 (março de 1987): 2–6. http://dx.doi.org/10.1016/0264-682x(87)90025-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Popescu, M. "Boundary element methods in solid mechanics". Earth-Science Reviews 22, n.º 1 (maio de 1985): 96–97. http://dx.doi.org/10.1016/0012-8252(85)90044-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Allgower, Eugene L., Kurt Georg e Ralf Widmann. "Volume integrals for boundary element methods". Journal of Computational and Applied Mathematics 38, n.º 1-3 (dezembro de 1991): 17–29. http://dx.doi.org/10.1016/0377-0427(91)90158-g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Steinbach, O. "Boundary element methods for variational inequalities". Numerische Mathematik 126, n.º 1 (17 de maio de 2013): 173–97. http://dx.doi.org/10.1007/s00211-013-0554-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Langer, U., e O. Steinbach. "Boundary Element Tearing and Interconnecting Methods". Computing 71, n.º 3 (1 de novembro de 2003): 205–28. http://dx.doi.org/10.1007/s00607-003-0018-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Langer, Ulrich, e Olaf Steinbach. "Recent Advances in Boundary Element Methods". Computational Methods in Applied Mathematics 23, n.º 2 (28 de março de 2023): 297–99. http://dx.doi.org/10.1515/cmam-2023-0037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Carstensen, Carsten, e Ernst P. Stephan. "Adaptive boundary-element methods for transmission problems". Journal of the Australian Mathematical Society. Series B. Applied Mathematics 38, n.º 3 (janeiro de 1997): 336–67. http://dx.doi.org/10.1017/s0334270000000722.

Texto completo da fonte
Resumo:
AbstractIn this paper we present an adaptive boundary-element method for a transmission prob-lem for the Laplacian in a two-dimensional Lipschitz domain. We are concerned with an equivalent system of boundary-integral equations of the first kind (on the transmission boundary) involving weakly-singular, singular and hypersingular integral operators. For the h-version boundary-element (Galerkin) discretization we derive an a posteriori error estimate which guarantees a given bound for the error in the energy norm (up to a multiplicative constant). Then, following Eriksson and Johnson this yields an adaptive algorithm steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically good triangulations and are efficient.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Ganesh, M., e O. Steinbach. "Boundary element methods for potential problems with nonlinear boundary conditions". Mathematics of Computation 70, n.º 235 (12 de junho de 2000): 1031–43. http://dx.doi.org/10.1090/s0025-5718-00-01266-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Wu, K. L., G. Y. Delisle, D. G. Fang e M. Lecours. "Coupled Finite Element and boundary Element Methods in Electromagnetic Scattering". Progress In Electromagnetics Research 02 (1990): 113–32. http://dx.doi.org/10.2528/pier89010300.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Of, G., G. J. Rodin, O. Steinbach e M. Taus. "Coupling of Discontinuous Galerkin Finite Element and Boundary Element Methods". SIAM Journal on Scientific Computing 34, n.º 3 (janeiro de 2012): A1659—A1677. http://dx.doi.org/10.1137/110848530.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bernhard, Robert J. "General characteristics of the finite element and boundary element methods." Journal of the Acoustical Society of America 90, n.º 4 (outubro de 1991): 2250. http://dx.doi.org/10.1121/1.401507.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Tanaka, Masataka, Vladimir Sladek e Jan Sladek. "Regularization Techniques Applied to Boundary Element Methods". Applied Mechanics Reviews 47, n.º 10 (1 de outubro de 1994): 457–99. http://dx.doi.org/10.1115/1.3111062.

Texto completo da fonte
Resumo:
This review article deals with the regularization of the boundary element formulations for solution of boundary value problems of continuum mechanics. These formulations may be singular owing to the use of two-point singular fundamental solutions. When the physical interpretation is irrelevant for this topic of computational mechanics, we consider various mechanical problems simultaneously within particular sections selected according to the main topic. In spite of such a structure of the paper, applications of the regularization techniques to many mechanical problems are described. There are distinguished two main groups of regularization techniques according to their application to singular formulations either before or after the discretization. Further subclassification of each group is made with respect to basic principles employed in individual regularization techniques. This paper summarizes the substances of the regularization procedures which are illustrated on the boundary element formulation for a scalar potential field. We discuss the regularizations of both the strongly singular and hypersingular integrals, occurring in the boundary integral equations, as well as those of nearly singular and nearly hypersingular integrals arising when the source point is near the integration element (as compared to its size) but not on this element. The possible dimensional inconsistency (or scale dependence of results) of the regularization after discretization is pointed out. Finally, we discuss the numerical approximations in various boundary element formulations, as well as the implementations of solutions of some problems for which derivative boundary integral equations are required.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Panchal, Piyush, e Ralf Hiptmair. "Electrostatic Force Computation with Boundary Element Methods". SMAI journal of computational mathematics 8 (8 de abril de 2022): 49–74. http://dx.doi.org/10.5802/smai-jcm.79.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

JEON, Youngmok, e Eun-Jae PARK. "Cell boundary element methods for elliptic problems". Hokkaido Mathematical Journal 36, n.º 4 (novembro de 2007): 669–85. http://dx.doi.org/10.14492/hokmj/1272848027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Georg, Kurt. "Approximation of Integrals for Boundary Element Methods". SIAM Journal on Scientific and Statistical Computing 12, n.º 2 (março de 1991): 443–53. http://dx.doi.org/10.1137/0912024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Nguyen, D. T., J. Qin, M. I. Sancer e R. McClary. "Finite element–boundary integral methods in electromagnetics". Finite Elements in Analysis and Design 38, n.º 5 (março de 2002): 391–400. http://dx.doi.org/10.1016/s0168-874x(01)00066-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Amaya, K., e S. Aoki. "Effective boundary element methods in corrosion analysis". Engineering Analysis with Boundary Elements 27, n.º 5 (maio de 2003): 507–19. http://dx.doi.org/10.1016/s0955-7997(02)00158-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Brebbia, C. "10th International conference on boundary element methods". Engineering Analysis with Boundary Elements 5, n.º 4 (dezembro de 1988): 217–19. http://dx.doi.org/10.1016/0955-7997(88)90012-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Aliabadi, M. H. "Developments in boundary element methods - volume 4". Engineering Analysis with Boundary Elements 8, n.º 4 (agosto de 1991): 215. http://dx.doi.org/10.1016/0955-7997(91)90016-m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Onishi, K. "Boundary element methods applied to transport phenomena". Advances in Water Resources 11, n.º 3 (setembro de 1988): 133–38. http://dx.doi.org/10.1016/0309-1708(88)90007-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Brebbia, Carlos. "10th International Conference on Boundary Element Methods". Advances in Water Resources 11, n.º 3 (setembro de 1988): 150–52. http://dx.doi.org/10.1016/0309-1708(88)90010-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Cross, M. "Developments in boundary element methods: Vol. 4". Applied Mathematical Modelling 11, n.º 1 (fevereiro de 1987): 73. http://dx.doi.org/10.1016/0307-904x(87)90188-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia