Artigos de revistas sobre o tema "Borosilicates de baryum"

Siga este link para ver outros tipos de publicações sobre o tema: Borosilicates de baryum.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Borosilicates de baryum".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Moridi, G. R., A. Nouruzi e C. A. Hogarth. "Electrical properties of barium-borosilicate glasses". Journal of Materials Science 26, n.º 23 (dezembro de 1991): 6271–74. http://dx.doi.org/10.1007/bf02387803.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kingnoi, Namthip, Jiratchaya Ayawanna e Nattapol Laorodphan. "Barium (Zinc) Borosilicate Sealing Glass and Joining Interface with YSZ Electrolyte and Crofer22APU Interconnect in SOFCs". Solid State Phenomena 283 (setembro de 2018): 72–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.283.72.

Texto completo da fonte
Resumo:
This work describes the performance of two glass-ceramic compositions, BaO-SiO2-B2O3 (Barium borosilicate glass: BaBS) and BaO-ZnO-SiO2-B2O3 (Barium zinc borosilicate glass: BaBS−Zn), used for joining YSZ ceramic electrolytes and Crofer22APU metallic interconnects in solid oxide fuel cells (SOFCs) working at 800°C for 50 h. ZnO had a negative effect on the thermal expansion coefficient (TEC) value of the BaBS-Zn glass-ceramic. XRD and SEM results revealed the formation of rod-shaped barium zinc silicate crystalline phases in the BaBS-Zn glass, which was accompanied by cracks and poor adherence at the YSZ/BaBS-Zn joint interface after working at 800°C for 50 h. The formation of cracks parallel to the interface between the Crofer22APU interconnect and the BaBS-Zn glass-ceramic sealant was observed due to the severe TEC mismatch. The BaBS glass–ceramic adhered well to the YSZ electrolyte as well as the pre-oxidized Crofer22APU without cracks. Chromium oxide scale developed between the pre-oxidized Crofer22APU/BaBS glass-ceramic joint interface with increasing the pre-oxidation temperature. This study shows that BaBS glass-ceramic is more effective than BaBS-Zn as a sealant for joining YSZ electrolytes and Crofer22APU metallic interconnects in SOFCs working at 800°C for 50 h.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Savage, David, Jane E. Robbins e Richard J. Merriman. "Hydrothermal crystallization of a radioactive waste storage glass". Mineralogical Magazine 49, n.º 351 (abril de 1985): 195–201. http://dx.doi.org/10.1180/minmag.1985.049.351.06.

Texto completo da fonte
Resumo:
AbstractA borosilicate glass, containing 25 wt. % of simulated high-level radioactive waste has been reacted with water at 350°C and 500 bars for 14 and 48 days using large-volume ‘cold-seal’ high-pressure equipment. Under these conditions the glass crystallizes a suite of mineral phases including: albite, NaAlSi3O8; aegirine, NaFeSi2O6; riebeckite, Na2Fe2(Fe,Mg)3Si8O22(OH)2; zektzerite, LiNaZrSi6O15; barium-strontium molybdate, (Ba,Sr)MoO4; stillwellite, (Nd,Ce,La)BSiO5; willemite, Zn2SiO4; smectite; a lithium-sodium borosilicate hydrate; melilite (åkermanite), Ca2MgSi2O7. A description of the morphology of these phases is given, together with a number of chemical analyses. The implications of the incorporation of waste species in these mineral phases to the disposal of high-level radioactive waste is discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kavaz, E., F. I. El_Agawany, H. O. Tekin, U. Perişanoğlu e Y. S. Rammah. "Nuclear radiation shielding using barium borosilicate glass ceramics". Journal of Physics and Chemistry of Solids 142 (julho de 2020): 109437. http://dx.doi.org/10.1016/j.jpcs.2020.109437.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kumar, Vishal, O. P. Pandey e K. Singh. "Structural and optical properties of barium borosilicate glasses". Physica B: Condensed Matter 405, n.º 1 (janeiro de 2010): 204–7. http://dx.doi.org/10.1016/j.physb.2009.08.055.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mishra, R. K., V. Sudarsan, A. K. Tyagi, C. P. Kaushik, Kanwar Raj e S. K. Kulshreshtha. "Structural studies of ThO2 containing barium borosilicate glasses". Journal of Non-Crystalline Solids 352, n.º 28-29 (agosto de 2006): 2952–57. http://dx.doi.org/10.1016/j.jnoncrysol.2006.04.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Mishra, R. K., P. U. Sastry, A. K. Tyagi, C. P. Kaushik e Kanwar Raj. "SAXS study of barium borosilicate glasses containing ThO2". Journal of Alloys and Compounds 466, n.º 1-2 (outubro de 2008): 543–45. http://dx.doi.org/10.1016/j.jallcom.2007.11.092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Yadav, Avadhesh Kumar, C. R. Gautam e Prabhakar Singh. "Crystallization and dielectric properties of Fe2O3 doped barium strontium titanate borosilicate glass". RSC Advances 5, n.º 4 (2015): 2819–26. http://dx.doi.org/10.1039/c4ra11301b.

Texto completo da fonte
Resumo:
An attempt has been made to prepare barium strontium titanate borosilicate glasses in the system, 64[(Ba1−xSrx)·TiO3]–30[2SiO2·B2O3]–5[K2O]–1[Fe2O3] (0.4 ≤ x ≤ 1.0), using the conventional melt-quench method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Tekin, Huseyin Ozan, Shamselden Abdelrasoul Mohamad Issa, Karem Abdel-Azeem Mahmoud, Fouad Ismail El-Agawany, Yasser Saad Rammah, Gulfem Susoy, Mohammed Sultan Al-Buriahi, Mohamed Mahmoud Abuzaid e Iskender Akkurt. "Nuclear radiation shielding competences of barium-reinforced borosilicate glasses". Emerging Materials Research 9, n.º 4 (1 de dezembro de 2020): 1131–44. http://dx.doi.org/10.1680/jemmr.20.00185.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wu, Jenn-Ming, e Hong-Lin Huang. "Microwave properties of zinc, barium and lead borosilicate glasses". Journal of Non-Crystalline Solids 260, n.º 1-2 (dezembro de 1999): 116–24. http://dx.doi.org/10.1016/s0022-3093(99)00513-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Mandal, Ashis Kumar, Dinesh Agrawal e Ranjan Sen. "Preparation of homogeneous barium borosilicate glass using microwave energy". Journal of Non-Crystalline Solids 371-372 (julho de 2013): 41–46. http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Mishra, R. K., Pranesh Sengupta, C. P. Kaushik, A. K. Tyagi, G. B. Kale e Kanwar Raj. "Studies on immobilization of thorium in barium borosilicate glass". Journal of Nuclear Materials 360, n.º 2 (fevereiro de 2007): 143–50. http://dx.doi.org/10.1016/j.jnucmat.2006.09.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Li, Huidong, Lang Wu, Xin Wang, Dong Xu, Yuancheng Teng e Yuxiang Li. "Crystallization behavior and microstructure of barium borosilicate glass–ceramics". Ceramics International 41, n.º 10 (dezembro de 2015): 15202–7. http://dx.doi.org/10.1016/j.ceramint.2015.08.095.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Santha, N., T. K. Nideep e S. R. Rejisha. "Synthesis and characterization of barium borosilicate glass–Al2O3 composites". Journal of Materials Science: Materials in Electronics 23, n.º 7 (28 de dezembro de 2011): 1435–41. http://dx.doi.org/10.1007/s10854-011-0609-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Mishra, R. K., Sumit Kumar, B. S. Tomar, A. K. Tyagi, C. P. Kaushik, Kanwar Raj e V. K. Manchanda. "Effect of barium on diffusion of sodium in borosilicate glass". Journal of Hazardous Materials 156, n.º 1-3 (agosto de 2008): 129–34. http://dx.doi.org/10.1016/j.jhazmat.2007.12.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Tuscharoen, Suparat, Suwimon Ruengsri e Jakrapong Kaewkhao. "Development of Barium Borosilicate Glass Using Rice Husk Ash: Effect of BaO". Advanced Materials Research 770 (setembro de 2013): 201–4. http://dx.doi.org/10.4028/www.scientific.net/amr.770.201.

Texto completo da fonte
Resumo:
This paper is report on the physical and optical properties of development barium-borate-rice husk ash (BaBRHA) glass system. The glasses containing BaO in xBaO:(80-x)B2O3:20RHA where x = 30, 35, 40 and 45 wt% have been prepared by melt quenching technique. The physical properties of this glass are shown from density data. The optical properties were investigated from refractive index and transmission by using Abbe-refractometer and UV-visible spectrometer respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Ehab, Mohamed, Elsayed Salama, Ahmed Ashour, Mohamed Attallah e Hosam M. Saleh. "Optical Properties and Gamma Radiation Shielding Capability of Transparent Barium Borosilicate Glass Composite". Sustainability 14, n.º 20 (16 de outubro de 2022): 13298. http://dx.doi.org/10.3390/su142013298.

Texto completo da fonte
Resumo:
In this study, both radiation shielding capability and optical properties of prepared SiO2-ZnO-Na2CO3-H3BO3-BaCO3 glass composite with different concentrations of barium carbonate (0–30 mol%) have been studied. Gamma attenuation properties, such as the mass attenuation coefficient (MAC), mean free path (MFP), and exposure build-up factor (EBF), are experimentally and theoretically investigated. The detected XRD patterns for the prepared glass composites confirm their amorphous nature. It is evident from the obtained data that all tested parameters, such as mass density, molar volume, refractive index, dielectric constant, refraction loss (%), and molar refraction, have been increased as BaCO3 mol% increased. At the same time, the results of the optical bandgap show a gradual decrease with increasing barium concentration. It was also found that the mass attenuation coefficients increased with BaCO3 concentration from 0.078 at zero mol% BaCO3 to 0.083 cm2/g at 30 mol%. Moreover, the half-value layer (HVL) and the exposure build-up factor (EBF) up to 40 mfp penetration depth were investigated in addition to the effective atomic number (Zeff) and the corresponding equivalent atomic number (Zeq) at the energy range of 0.015–15 MeV. The produced glass composite might be considered for many shielding applications based on the obtained results that require a transparent shielding material.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Sava, Bogdan Alexandru, Adriana Diaconu, Luminita Daniela Ursu, Lucica Boroica, M. Elisa, Cristiana Eugenia Ana Grigorescu, Ileana Cristina Vasiliu et al. "Ecological Silicate Glasses". Advanced Materials Research 39-40 (abril de 2008): 667–70. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.667.

Texto completo da fonte
Resumo:
The investigated ecological glasses with no toxic compounds, such as BaO, PbO, As2O3, As2O5, fluorine, CdS and CdSe in their composition are located in ternary and quaternary oxide systems: ZnO-SiO2-TiO2 and SiO2-R'2O-R''O-R'''O2, where R' is Na or K, R'' is Ca or Mg and R''' is Zr or Ti. The first system contains P2O5, ZnO and TiO2 in order to obtain opal glasses, without fluorine compounds. The second system replaces the barium oxide and lead oxide with potassium, magnesium, zirconium and titanium oxides, for materials like lead free crystals. The raw materials can be replaced by silicate or borosilicate glass waste. The advantages of borosilicate glass waste are: bringing valuable components into recipes (B2O3, CaO, Al2O3), saving raw materials and energy, creating an ecological environment The characteristic temperatures (vitreous transition point, low and high annealing points, softening point) and the thermal expansion coefficient of the glass are presented. The FTIR and Raman spectroscopy provided structural data, such as characteristic vibration maxima for silicon and titanium oxide, and revealed the role of zinc oxide in the vitreous network. The refraction index and UV-VIS transmission are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Yadav, Avadhesh Kumar, e C. R. Gautam. "Barium Strontium Titanate Borosilicate Glass Ceramics as High Energy Density Capacitor". Advanced Science Letters 20, n.º 5 (1 de maio de 2014): 1176–80. http://dx.doi.org/10.1166/asl.2014.5451.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Bootjomchai, Cherdsak, Jintana Laopaiboon, Chadet Yenchai e Raewat Laopaiboon. "Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses". Radiation Physics and Chemistry 81, n.º 7 (julho de 2012): 785–90. http://dx.doi.org/10.1016/j.radphyschem.2012.01.049.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Mishra, R. K., V. Sudarsan, C. P. Kaushik, Kanwar Raj, S. K. Kulshreshtha e A. K. Tyagi. "Structural aspects of barium borosilicate glasses containing thorium and uranium oxides". Journal of Nuclear Materials 359, n.º 1-2 (dezembro de 2006): 132–38. http://dx.doi.org/10.1016/j.jnucmat.2006.08.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ramkumar, Jayshree, S. Chandramouleeswaran, V. Sudarsan, R. K. Mishra, C. P. Kaushik, Kanwar Raj e A. K. Tyagi. "Barium borosilicate glass as a matrix for the uptake of dyes". Journal of Hazardous Materials 172, n.º 1 (dezembro de 2009): 457–64. http://dx.doi.org/10.1016/j.jhazmat.2009.07.028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Pavlovskii, V. K., e Yu S. Sobolev. "Temperature dependence of corrosion of refractories in barium borosilicate glass melts". Glass and Ceramics 49, n.º 6 (junho de 1992): 280–82. http://dx.doi.org/10.1007/bf00677156.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Mishra, R. K., R. Mishra, C. P. Kaushik, A. K. Tyagi, D. Das e Kanwar Raj. "Effect of ThO2 on ionic transport behavior of barium borosilicate glasses". Journal of Nuclear Materials 392, n.º 1 (julho de 2009): 1–5. http://dx.doi.org/10.1016/j.jnucmat.2009.03.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Yadav, Avadhesh Kumar, C. R. Gautam e Prabhakar Singh. "Dielectric behavior of lanthanum added barium strontium titanate borosilicate glass ceramics". Journal of Materials Science: Materials in Electronics 26, n.º 7 (1 de abril de 2015): 5001–8. http://dx.doi.org/10.1007/s10854-015-3013-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Dhara, Amrita, R. K. Mishra, R. Shukla, T. P. Valsala, V. Sudarsan, A. K. Tyagi e C. P. Kaushik. "A comparative study on the structural aspects of sodium borosilicate glasses and barium borosilicate glasses: Effect of Al2O3 addition". Journal of Non-Crystalline Solids 447 (setembro de 2016): 283–89. http://dx.doi.org/10.1016/j.jnoncrysol.2016.04.040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Farzana, Rifat, Pranesh Dayal, Inna Karatchevtseva, Zaynab Aly e Daniel J. Gregg. "The incorporation of Li2SO4 into barium borosilicate glass for nuclear waste immobilisation". Journal of Alloys and Compounds 897 (março de 2022): 162746. http://dx.doi.org/10.1016/j.jallcom.2021.162746.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

MITSUHASHI, Masahiko, Seishiro OHYA, Shiro KARASAWA, Kenji AKIMOTO e Setsuo KODATO. "Emissivity Measurement of Barium Borosilicate Glass Film Formed by Pulsed Laser Deposition." SHINKU 40, n.º 5 (1997): 460–63. http://dx.doi.org/10.3131/jvsj.40.460.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Heath, Paul G., Claire L. Corkhill, Martin C. Stennett, Russell J. Hand, Kieran M. Whales e Neil C. Hyatt. "Immobilisation of Prototype Fast Reactor raffinate in a barium borosilicate glass matrix". Journal of Nuclear Materials 508 (setembro de 2018): 203–11. http://dx.doi.org/10.1016/j.jnucmat.2018.05.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Mishra, Raman K., Vasanthakumaran Sudarsan, Savita Jain, Chetan P. Kaushik, Rajesh K. Vatsa e Avesh K. Tyagi. "Structural and Luminescence Studies on Barium Sodium Borosilicate Glasses Containing Uranium Oxides". Journal of the American Ceramic Society 97, n.º 2 (13 de dezembro de 2013): 427–31. http://dx.doi.org/10.1111/jace.12735.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Hayashi, T., e W. G. Dorfeld. "Electrochemical study of As3+/As5+ equilibrium in a barium borosilicate glass melt". Journal of Non-Crystalline Solids 177 (novembro de 1994): 331–39. http://dx.doi.org/10.1016/0022-3093(94)90547-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Monteiro, Regina C. C., Andreia A. S. Lopes, Maria M. A. Lima, João P. Veiga, Rui J. C. Silva, Carlos J. Dias, Erika J. R. Davim e Maria H. V. Fernandes. "Sintering, Crystallization, and Dielectric Behavior of Barium Zinc Borosilicate Glasses-Effect of Barium Oxide Substitution for Zinc Oxide". Journal of the American Ceramic Society 95, n.º 10 (3 de setembro de 2012): 3144–50. http://dx.doi.org/10.1111/j.1551-2916.2012.05418.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Ochiai, S., H. Okuda, S. Kimura, K. Morishita, M. Tanaka, M. Hojo e M. Sato. "Improvement of Young's modulus and tensile strength of polymer impregnation and pyrolysis processed SiC/SiC composite by improved continuity of matrix". Journal of Materials Research 19, n.º 8 (agosto de 2004): 2377–88. http://dx.doi.org/10.1557/jmr.2004.0290.

Texto completo da fonte
Resumo:
Influences of the continuity of the matrix on Young's modulus and tensile strength of unidirectional SiC/SiC mini-composite prepared by the polymer impregnation and pyrolysis method were studied experimentally by observation of appearance of matrix and tensile test and analytically by a shear lag–Monte Carlo simulation. The continuity of the matrix was improved by the addition of particles such as ZrSiO4, barium magnesium aluminosilicate, and Pyrex (borosilicate glass) into the matrix. The improved continuity of the matrix led to the increase in stress carrying capacity of the matrix and therefore to the increase in Young's modulus and tensile strength of the composite. Such a correlation between the continuity of the matrix and the property of the composite was verified numerically by the shear lag–Monte Carlo simulation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Hsu, Jen-Hsien, Cheol-Woon Kim, Richard K. Brow, Joe Szabo, Ray Crouch e Rob Baird. "An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells". Journal of Power Sources 270 (dezembro de 2014): 14–20. http://dx.doi.org/10.1016/j.jpowsour.2014.07.088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kumar, Sumit, R. K. Mishra, B. S. Tomar, A. K. Tyagi, C. P. Kaushik, Kanwar Raj e V. K. Manchanda. "Heavy ion Rutherford backscattering spectrometry (HIRBS) study of barium diffusion in borosilicate glass". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, n.º 4 (fevereiro de 2008): 649–52. http://dx.doi.org/10.1016/j.nimb.2007.12.062.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Laopaiboon, R., C. Bootjomchai, M. Chanphet e J. Laopaiboon. "Elastic properties investigation of gamma-radiated barium lead borosilicate glass using ultrasonic technique". Annals of Nuclear Energy 38, n.º 11 (novembro de 2011): 2333–37. http://dx.doi.org/10.1016/j.anucene.2011.07.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Eremyashev, V. E., D. A. Zherebtsov, L. M. Osipova e M. V. Brazhnikov. "Effect of Calcium, Barium, and Strontium on the Thermal Properties of Borosilicate Glasses". Glass and Ceramics 74, n.º 9-10 (janeiro de 2018): 345–48. http://dx.doi.org/10.1007/s10717-018-9991-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Lopes, A. A. S., R. C. C. Monteiro, R. S. Soares, M. M. R. A. Lima e M. H. V. Fernandes. "Crystallization kinetics of a barium–zinc borosilicate glass by a non-isothermal method". Journal of Alloys and Compounds 591 (abril de 2014): 268–74. http://dx.doi.org/10.1016/j.jallcom.2013.12.086.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

El-Alaily, N. A., E. M. Abou Hussein e F. M. Ezz Eldin. "Gamma Irradiation and Heat Treatment Effects on Barium Borosilicate Glasses Doped Titanium Oxide". Journal of Inorganic and Organometallic Polymers and Materials 28, n.º 6 (25 de julho de 2018): 2662–76. http://dx.doi.org/10.1007/s10904-018-0934-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Khoeini, Mohammad, Alireza Kolahi e Saeed Hesaraki. "Mechanical properties, bioactivity and cell behavior of barium-containing calcium-phospho-alumino-borosilicate glass". Ceramics International 48, n.º 6 (março de 2022): 7643–51. http://dx.doi.org/10.1016/j.ceramint.2021.11.309.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Zhao, Peidong, Scott Kroeker e Jonathan F. Stebbins. "Non-bridging oxygen sites in barium borosilicate glasses: results from 11B and 17O NMR". Journal of Non-Crystalline Solids 276, n.º 1-3 (outubro de 2000): 122–31. http://dx.doi.org/10.1016/s0022-3093(00)00290-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Mishra, R. K., V. Sudarsan, C. P. Kaushik, Kanwar Raj, R. K. Vatsa, M. Body e A. K. Tyagi. "Effect of fluoride ion incorporation on the structural aspects of barium–sodium borosilicate glasses". Journal of Non-Crystalline Solids 355, n.º 7 (março de 2009): 414–19. http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Evans, N. D., P. H. Imamura, J. Bentley e M. L. Mecartney. "Characterization of Intergranular Phases in Tetragonal and Cubic Yttria-Stabilized Zirconia". Microscopy and Microanalysis 4, S2 (julho de 1998): 584–85. http://dx.doi.org/10.1017/s1431927600023047.

Texto completo da fonte
Resumo:
Achieving superplasticity in fine-grained ceramics is a potential method to lower energy costs associated with ceramic manufacturing via net shape forming. Superplasticity is intrinsic in 3-mol%- yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP), and can be enhanced by addition of glass to form intergranular phases which are thought to both limit grain growth and promote grain boundary sliding during processing (sintering and hot isostatic pressing). This permits processing at lower temperatures. However, superplasticity has not been observed in 8-mol%-yttria-stabilized cubic zirconia (8Y-CSZ), ostensibly due to its larger grain size and high grain growth rates.3,4 As part of a larger study, high-spatial-resolution energy-dispersive X-ray spectrometry (EDS) has been performed on 3Y-TZP and 8Y-CSZ specimens doped with various glassy phases to characterize intergranular compositions.Zirconia powders were mixed with glass to produce specimens having either 1 wt % lithiumaluminum- silicate, 1 wt % barium-silicate, or 1 wt % borosilicate. Some specimens were prepared without added glass.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Çöpoğlu, Nurullah, Hatice Gökdemir, Tamer Cengiz e Buğra Çiçek. "Barium borosilicate glass coatings based on biomass for steel surfaces: Use of rice husk ash". Ceramics International 48, n.º 6 (março de 2022): 8671–79. http://dx.doi.org/10.1016/j.ceramint.2021.12.078.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Mhareb, M. H. A., Muna Alqahtani, Y. S. M. Alajerami, Fatimh Alshahri, M. I. Sayyed, K. A. Mahmoud, Noha Saleh, N. Alonizan, M. S. Al-Buriahi e Kawa M. Kaky. "Ionizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide". Materials Chemistry and Physics 272 (novembro de 2021): 125047. http://dx.doi.org/10.1016/j.matchemphys.2021.125047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Salinigopal, M. S., N. Gopakumar, P. S. Anjana e O. P. Pandey. "Rare earth added barium alumino borosilicate glass-ceramics as sealants in solid oxide fuel cells". Journal of Non-Crystalline Solids 576 (janeiro de 2022): 121242. http://dx.doi.org/10.1016/j.jnoncrysol.2021.121242.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Sasmal, Nibedita, Mrinmoy Garai, Atiar Rahman Molla, Anal Tarafder, Shiv Prakash Singh e Basudeb Karmakar. "Effects of lanthanum oxide on the properties of barium-free alkaline-earth borosilicate sealant glass". Journal of Non-Crystalline Solids 387 (março de 2014): 62–70. http://dx.doi.org/10.1016/j.jnoncrysol.2013.12.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Li, Huidong, Lang Wu, Dong Xu, Xin Wang, Yuancheng Teng e Yuxiang Li. "Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases". Journal of Nuclear Materials 466 (novembro de 2015): 484–90. http://dx.doi.org/10.1016/j.jnucmat.2015.08.031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Wang, Xin, Lang Wu, Huidong Li, Jizong Xiao, Xin Cai e Yuancheng Teng. "Preparation and characterization of SO3-doped barium borosilicate glass-ceramics containing zirconolite and barite phases". Ceramics International 43, n.º 1 (janeiro de 2017): 534–39. http://dx.doi.org/10.1016/j.ceramint.2016.09.190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Yadav, Avadhesh Kumar, e C. R. Gautam. "Synthesis, Structural and Optical Studies of Barium Strontium Titanate Borosilicate Glasses Doped with Ferric Oxide". Spectroscopy Letters 48, n.º 7 (3 de fevereiro de 2015): 514–20. http://dx.doi.org/10.1080/00387010.2014.920886.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia