Literatura científica selecionada sobre o tema "Bone Diseases, Metabolic – physiopathology"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Bone Diseases, Metabolic – physiopathology".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Bone Diseases, Metabolic – physiopathology"
Izzo, Marcello, Albino Carrizzo, Carmine Izzo, Enrico Cappello, Domenico Cecere, Michele Ciccarelli, Patrizia Iannece, Antonio Damato, Carmine Vecchione e Francesco Pompeo. "Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases". Life 11, n.º 5 (18 de maio de 2021): 452. http://dx.doi.org/10.3390/life11050452.
Texto completo da fonteBiver, Emmanuel, Pierre Hardouin e Joseph Caverzasio. "The “bone morphogenic proteins” pathways in bone and joint diseases: Translational perspectives from physiopathology to therapeutic targets". Cytokine & Growth Factor Reviews 24, n.º 1 (fevereiro de 2013): 69–81. http://dx.doi.org/10.1016/j.cytogfr.2012.06.003.
Texto completo da fonteGrill, Vivian, e T. John Martin. "Metabolic bone diseases". Medical Journal of Australia 163, n.º 1 (julho de 1995): 38–41. http://dx.doi.org/10.5694/j.1326-5377.1995.tb126087.x.
Texto completo da fonteSEINO, YOSHIKI. "Metabolic bone diseases". Pediatrics International 39, n.º 4 (agosto de 1997): 478. http://dx.doi.org/10.1111/j.1442-200x.1997.tb03623.x.
Texto completo da fonteHorvai, Andrew E., e Brendan F. Boyce. "Metabolic bone diseases". Seminars in Diagnostic Pathology 28, n.º 1 (fevereiro de 2011): 13–25. http://dx.doi.org/10.1053/j.semdp.2011.02.004.
Texto completo da fonteDubois-Deruy, Emilie, Yara El Masri, Annie Turkieh, Philippe Amouyel, Florence Pinet e Jean-Sébastien Annicotte. "Cardiac Acetylation in Metabolic Diseases". Biomedicines 10, n.º 8 (29 de julho de 2022): 1834. http://dx.doi.org/10.3390/biomedicines10081834.
Texto completo da fonteDumond Bourie, Aurore, Jean-Baptiste Potier, Michel Pinget e Karim Bouzakri. "Myokines: Crosstalk and Consequences on Liver Physiopathology". Nutrients 15, n.º 7 (31 de março de 2023): 1729. http://dx.doi.org/10.3390/nu15071729.
Texto completo da fonteSánchez-Oliver, Antonio Jesús. "Obesity Phisiopathology: Current Perspectives". Journal of Nutritional Biology 4, n.º 1 (20 de dezembro de 2017): 21. http://dx.doi.org/10.18314/jnb.v4i1.160.
Texto completo da fonteRossi, Francesca, Chiara Tortora, Marco Paoletta, Maria Maddalena Marrapodi, Maura Argenziano, Alessandra Di Paola, Elvira Pota, Daniela Di Pinto, Martina Di Martino e Giovanni Iolascon. "Osteoporosis in Childhood Cancer Survivors: Physiopathology, Prevention, Therapy and Future Perspectives". Cancers 14, n.º 18 (6 de setembro de 2022): 4349. http://dx.doi.org/10.3390/cancers14184349.
Texto completo da fonteSinigaglia, L. "Metabolic bone diseases: an overview". Reumatismo 66, n.º 2 (28 de julho de 2014): 109. http://dx.doi.org/10.4081/reumatismo.2014.783.
Texto completo da fonteTeses / dissertações sobre o assunto "Bone Diseases, Metabolic – physiopathology"
Laketic-Ljubojevic, Ira. "Glutamate signalling in bone cells". Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311080.
Texto completo da fonteTaylor, Amanda Faith. "The role of glutamate in bone formation in vitro". Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341824.
Texto completo da fonteSamnegård, Eva. "Pharmacological and hormonal effects on bone with emphasis on osteoporosis : experimental studies in the rat /". Stockholm : Karolinska Univ. Press, 2001. http://diss.kib.ki.se/2001/91-89428-08-0/.
Texto completo da fonteKarunaratne, Malintha P. Angelo. "Analysis of alterations in matrix quality at nanoscale in metabolic bone diseases using synchrotron X-ray diffraction". Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8490.
Texto completo da fonteSimmons, Natalie Renee. "CHEST X-RAY CLUES TO OSTEOPOROSIS: CRITERIA, CORRELATIONS, AND CONSISTENCY". Yale University, 2009. http://ymtdl.med.yale.edu/theses/available/etd-04162009-161245/.
Texto completo da fonteUeno, Melise Jacon Peres [UNESP]. "Efeitos do desuso e da deficiência de estrógeno sobre a microarquitetura óssea e suas propriedades biomecânicas". Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/134197.
Texto completo da fonteCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O objetivo desse estudo foi analisar se há diferenças no efeito do desuso e da deficiência de estrógeno sobre o tecido ósseo trabecular e cortical, e se estes efeitos influenciam na qualidade do tecido ósseo aumentando sua fragilidade. Para este estudo, 30 ratas Wistar com 19 semanas de idade foram distribuídas nos grupos: controle (CON), descarregamento dos membros posteriores (HLU) e ovariectomizado (OVX). As análises da densidade óssea in vivo (DXA) dos fêmures e tíbias e as dosagens plasmáticas de cálcio, fósforo, fosfatase alcalina, TRAP (espectrofotometria) e E2 (ELISA) foram realizadas no início e fim do experimento, com 19 e 27 semanas de idade respectivamente. Na 27a semana, os fêmures e as tíbias foram desarticulados e armazenados para avaliar a microestrutura do osso trabecular e cortical (microtomografia computadorizada), além das propriedades biomecânicas do colo femoral e da diáfise femoral e tibial (ensaio mecânico). O grupo HLU apresentou diminuição na concentração plasmática de cálcio e atividade da fosfatase alcalina total, diminuição na DMOa do fêmur com aumento na porosidade cortical e diminuição na resistência óssea, entretanto, não foram observadas estas alterações na tíbia. O grupo OVX apresentou diminuição nas concentrações plasmáticas de cálcio, diminuição da DMOa do fêmur, deterioração trabecular no fêmur e na tíbia, com maior deterioração nas trabéculas ósseas tibiais, sem alteração na resistência óssea em ambos os ossos. Esses resultados demonstram que apesar do grupo HLU e OVX apresentassem alterações na densidade mineral óssea e microarquitetura óssea, podemos concluir que o desuso determinou maior perda no tecido cortical e na resistência óssea em relação à deficiência de estrógeno. Portanto, as análises da estrutura do tecido cortical, como a porosidade cortical, podem ser preponderantes para prever o risco de fratura
The objective of this study was to analyze whether there are differences in the effect of disuse and estrogen deficiency on trabecular and cortical bone tissue, and whether these effects influence the quality of bone tissue increasing its fragility. For this study, 30 Wistar rats with 19 weeks old, were divided into groups: control (CON), hindlimb unloading (HLU) and ovariectomy (OVX). In vivo analysis of bone density (DXA) from femurs and tibias and plasma levels of calcium, phosphorus, alkaline phosphatase, TRAP (spectrophotometry) and E2 (ELISA) were performed at the beginning and end of the experiment, and 19 age 27 weeks, respectively. In the 27th week, the femur and tibia were disjointed and stored to assess the microstructure of trabecular and cortical bone (microcomputed tomography) and biomechanical properties of the femoral neck and femoral shaft and tibial (mechanical tests). The HLU group showed a decrease in plasma calcium concentration and total alkaline phosphatase activity, decreased femoral BMAD with increased cortical porosity and decrease in bone strength, however, there were no such changes in the tibia. The OVX group showed a decrease in plasma concentrations of calcium, decreased femoral BMAD, trabecular deterioration in the femur and tibia, with further deterioration in the tibial trabecular bone, with no change in bone strength in both bones. These results demonstrate that although the HLU and OVX group showed changes in bone mineral density and bone microarchitecture, we can conclude that the in disuse determined higher cortical tissue loss and bone strength relative to estrogen deficiency. Therefore, the analysis of the cortical tissue structure, such as cortical porosity can be prevalent to predict fracture risk
Ueno, Melise Jacon Peres. "Efeitos do desuso e da deficiência de estrógeno sobre a microarquitetura óssea e suas propriedades biomecânicas /". Araçatuba, 2015. http://hdl.handle.net/11449/134197.
Texto completo da fonteBanca: William Dias Belangero
Banca: José Carlos Camargo Filho
Resumo: O objetivo desse estudo foi analisar se há diferenças no efeito do desuso e da deficiência de estrógeno sobre o tecido ósseo trabecular e cortical, e se estes efeitos influenciam na qualidade do tecido ósseo aumentando sua fragilidade. Para este estudo, 30 ratas Wistar com 19 semanas de idade foram distribuídas nos grupos: controle (CON), descarregamento dos membros posteriores (HLU) e ovariectomizado (OVX). As análises da densidade óssea in vivo (DXA) dos fêmures e tíbias e as dosagens plasmáticas de cálcio, fósforo, fosfatase alcalina, TRAP (espectrofotometria) e E2 (ELISA) foram realizadas no início e fim do experimento, com 19 e 27 semanas de idade respectivamente. Na 27a semana, os fêmures e as tíbias foram desarticulados e armazenados para avaliar a microestrutura do osso trabecular e cortical (microtomografia computadorizada), além das propriedades biomecânicas do colo femoral e da diáfise femoral e tibial (ensaio mecânico). O grupo HLU apresentou diminuição na concentração plasmática de cálcio e atividade da fosfatase alcalina total, diminuição na DMOa do fêmur com aumento na porosidade cortical e diminuição na resistência óssea, entretanto, não foram observadas estas alterações na tíbia. O grupo OVX apresentou diminuição nas concentrações plasmáticas de cálcio, diminuição da DMOa do fêmur, deterioração trabecular no fêmur e na tíbia, com maior deterioração nas trabéculas ósseas tibiais, sem alteração na resistência óssea em ambos os ossos. Esses resultados demonstram que apesar do grupo HLU e OVX apresentassem alterações na densidade mineral óssea e microarquitetura óssea, podemos concluir que o desuso determinou maior perda no tecido cortical e na resistência óssea em relação à deficiência de estrógeno. Portanto, as análises da estrutura do tecido cortical, como a porosidade cortical, podem ser preponderantes para prever o risco de fratura
Abstract: The objective of this study was to analyze whether there are differences in the effect of disuse and estrogen deficiency on trabecular and cortical bone tissue, and whether these effects influence the quality of bone tissue increasing its fragility. For this study, 30 Wistar rats with 19 weeks old, were divided into groups: control (CON), hindlimb unloading (HLU) and ovariectomy (OVX). In vivo analysis of bone density (DXA) from femurs and tibias and plasma levels of calcium, phosphorus, alkaline phosphatase, TRAP (spectrophotometry) and E2 (ELISA) were performed at the beginning and end of the experiment, and 19 age 27 weeks, respectively. In the 27th week, the femur and tibia were disjointed and stored to assess the microstructure of trabecular and cortical bone (microcomputed tomography) and biomechanical properties of the femoral neck and femoral shaft and tibial (mechanical tests). The HLU group showed a decrease in plasma calcium concentration and total alkaline phosphatase activity, decreased femoral BMAD with increased cortical porosity and decrease in bone strength, however, there were no such changes in the tibia. The OVX group showed a decrease in plasma concentrations of calcium, decreased femoral BMAD, trabecular deterioration in the femur and tibia, with further deterioration in the tibial trabecular bone, with no change in bone strength in both bones. These results demonstrate that although the HLU and OVX group showed changes in bone mineral density and bone microarchitecture, we can conclude that the in disuse determined higher cortical tissue loss and bone strength relative to estrogen deficiency. Therefore, the analysis of the cortical tissue structure, such as cortical porosity can be prevalent to predict fracture risk
Mestre
Ahmad, Tashfeen. "Diabetic osteopathy : a study in the rat /". Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-615-4/.
Texto completo da fonteFernandes, Fernanda [UNESP]. "Análise do colo femoral de ratas adultas e senis após tratamento com ocitocina". Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/143823.
Texto completo da fonteApproved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-09-09T13:14:26Z (GMT) No. of bitstreams: 1 fernandes_f_me_araca.pdf: 3056607 bytes, checksum: d763bb262cd01286f3a01d7fb1bcbab4 (MD5)
Made available in DSpace on 2016-09-09T13:14:26Z (GMT). No. of bitstreams: 1 fernandes_f_me_araca.pdf: 3056607 bytes, checksum: d763bb262cd01286f3a01d7fb1bcbab4 (MD5) Previous issue date: 2016-08-02
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Este estudo teve como objetivo analisar e comparar a ação da ocitocina (OT) no metabolismo ósseo de ratas Wistar cíclicas (12 meses) e acíclicas (18 meses/período de periestropausa). Os animais foram distribuídos em quatro grupos: (1) animais com 12 meses que receberam injeção com veículo NaCl (Veh/12); (2) animais com 12 meses que receberam injeção de OT (Ot / 12); (3) animais com 18 meses que receberam injeção com veículo NaCl (Veh/18); (4) animais com 18 meses que receberam injeção de OT (Ot / 18). Cada grupo foi composto por 8 animais. Os animais receberam duas injeções intraperitoneais de NaCl (0,15 M – grupo controle) ou OT (134 ug / kg – grupo tratado) com 12 horas de intervalo. Força, microarquitetura e biomarcadores ósseos [fosfatase alcalina (FAL) e fosfatase ácida resistente ao tartarato (TRAP)] foram analisados. Imunoistoquímica foi realizada para fator de transcrição relacionado com o Runt 2 (RUNX2), osterix (OSX), osteocalcina (OCN), osteopontina (OPN), proteína óssea morfogenética 2 e 4 (BMP-2/4), periostina (PER), esclerostina (ESC) e TRAP. Os animais que receberam OT demonstraram melhora significante na dosagem plasmática: aumento na FAL dos animais de 12 meses (p < 0,0001) e 18 meses (p = 0,0138); diminuição na TRAP dos animais de Ot / 12 (p = 0,0465) e Ot / 18 (p = 0,0045). Houve melhora nos parâmetros biomecânicos: força máxima (N) do grupo Ot / 18 (p = 0,0003); rigidez óssea (x103N/mm) do grupo Ot / 12 (p = 0,0223) e Ot / 18 (p = 0,0145); microarquitetura óssea cortical do grupo Ot / 18 para Ct.Ar (mm2 ) (p = 0,0416) e Ct.Po (%) (p = 0,0102); microarquitetura óssea trabecular para Tb.N (1/mm) (p = 0,0016) e Tb.Sp (p = 0,00010); todos os grupos foram comparados ao seus respectivos controles (Veh/12; Veh/18). Em resumo, os resultados demonstraram que a administração de OT foi eficaz para prevenir a perda de massa óssea em ratas Wistar velhas com hipoestrogenismo, reforçando este agente anabólico como forte alternativa terapêutica para prevenção e tratamento da osteoporose (OP), reduzindo os índices da doença e fraturas osteoporóticas.
This study aimed to analyze and compare the acting of oxytocin (OT) on bone metabolism of cyclic (12 months) and acyclic Wistar rats (18 months/peri-estropause period). Animals were allocated to four groups: (1) animals with 12 months that received vehicle injection NaCl (Veh/12); (2) animals with 12 months that received OT injection (Ot / 12); (3) animals with 18 months that received vehicle (Veh/18) and (4) animals with 18 months that received OT injection (Ot / 18). Eight animals composed each group. The animals received two intraperitoneal injections of NaCl (0.15 M - control group) or OT (134 ug / kg - treated groups) with 12 hours apart. Bone strength, microarchitecture, and biomarkers [alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP)] were assessed. Immunohistochemistry was performed for runt-related transcription factor 2 (RUNX2), osterix (OSX), osteocalcin (OCN), osteopontin (OPN), bone morphogenetic protein 2 and 4 (BMP- 2/4), periostin (PER), sclerostin (ESC) and TRAP. Animals that received OT showed significant improvements at plasma assay: increase in the ALP from the animals with 12 months (p < 0.0001) and 18 months (p = 0.0138); decrease in the TRAP from the Ot / 12 (p = 0.0465) and Ot / 18 (p = 0.0045). There was improvements at biomechanical parameters: maximum load (N) from the Ot / 18 (p = 0.0003); bone stiffness (x103N/mm) from the Ot / 12 (p = 0.0223) and Ot / 18 (p = 0.0145); cortical bone microarchitecture from the Ot / 18 to Ct.Ar (mm2 ) (p = 0.0416) and Ct.Po (%) (p = 0.0102); trabecular bone microarchitecture to Tb.N (1/mm) (p = 0.0016) and Tb.Sp. (p = 0.00010); all groups compared to its respective controls (Veh/12; Veh/18). In summary, the results showed the OT administration was effective to prevent the bone loss in old Wistar rats with hypoestrogenism, reforcing this anabolic agent as powerful therapeutic alternative to prevention and treatment for osteoporosis (OP), to reduce the rates of disease and osteoporotic fractures.
CNPq: 133834/2014-0
Coêlho, Juliana de Carvalho Apolinário. "Efeito do ultra-som de baixa potência na reparação óssea em ratos sob ausência de carga : análise densitométrica e biomecânica /". Araçatuba : [s.n.], 2008. http://hdl.handle.net/11449/92201.
Texto completo da fonteBanca: Ivania Garavella
Banca: Leda Maria Pescinini Salzedas
Resumo: A literatura apresenta que a resposta de reparo ósseo pode ser acentuada pela estimulação física, mecânica ou eletromagnética. Há evidências de que o ultra-som - US - de baixa potência pode acelerar a regeneração óssea. Este trabalho objetivou verificar o efeito do US no defeito ósseo, criado experimentalmente, em tíbias de ratos sob ausência de carga (suspenso pela cauda) por meio de análise densitométrica e biomecânica. Trinta Rattus novergicus albinus, Wistar, adultos, divididos em 3 grupos: G1 (n=10), não suspenso - experimento de 15 dias; G2 (n=10), suspenso pela cauda - experimento de 15 dias e, G3 (n=10), suspensos pela cauda, experimento de 36 dias. Os animais foram submetidos à osteotomia em ambas as tíbias e à aplicação do US (freqüência de 1,5 MHz, ciclo 1:4, 30mW/cm2) na direita (12 sessões de 20 minutos). O G3 somente foi osteotomizado após 21º dia de suspensão. Para análises densitométrica utilizou-se densitômetro DPXLunar ™, sistema digital Digora e o programa computacional Image J ; para ensaio mecânico usou máquina universal de ensaio EMIC . Os resultados do Conteúdo Mineral Ósseo (g), Área (cm²), Densidade Mineral Óssea (g/cm²) e da Densidade Óssea (mmAl) observadas nas tíbias, assim como a Força Máxima (N) e Rigidez (x103N/m) não demonstraram diferenças significantes (tratadas versus controle de cada grupo), possivelmente pelo menor tempo de tratamento com relação aos trabalhos encontrados na literatura. Concluindo que o Ultra-Som de baixa potência não acelerou o processo de consolidação óssea.
Abstract: Literature shows that bone repair response can be accented by physical, mechanic or electromagnetic stimulation. There are evidences that low power ultrasound - US - can speed up bone regeneration. This work aimed at determining the effect of US in bone defects, experimentally created, in tibia from rats under load absence (suspended by the tail) by densitometric analysis and biomechanics. Thirty Rattus novergicus albinus, Wistar, adult, divided in 3 groups: G1 (n=10), not suspended - a 15 day experiment; G2 (n=10), suspended by the tail - a 15 day experiment and, G3 (n=10), suspended by the tail - a 36 day experiment. , The animals have been submitted to the osteotomy in both tibias and to the US application (1,5 MHz frequency, cycle 1:4, 30mW/cm2), on the right (twelve sessions of 20 minutes). G3 was only osteotomized after the 21st day of suspension. DPX-Lunar™ densitometer, Digora digital system and Image J computer program were used for densitometrical analysis; for the mechanical assay, the universal machine of EMIC assay was used. The results for Bone Mineral Content (g), Area (cm²), Bone Mineral Density (g/cm²) and Bone Density (mmAl) observed in tibias, as well as Maximum Power (N), and Rigidity (x103N/m) did not show any significant differences (treated versus control of each group), possibly due to shorter treatment time as regards the studies found in literature. Concluding that the low power ultrasound not accelerated the process of consolidating bone.
Mestre
Livros sobre o assunto "Bone Diseases, Metabolic – physiopathology"
1948-, Regling Günter, ed. Wolff's law and connective tissue regulation: Modern interdisciplinary comments on Wolff's law of connective tissue regulation and rational understanding of common clinical problems. Berlin: W. de Gruyter, 1992.
Encontre o texto completo da fonteAllgrove, Jeremy, e Nick Shaw. Calcium and bone disorders in children and adolescents. 2a ed. Basel: Karger, 2015.
Encontre o texto completo da fonteJeremy, Allgrove, e Shaw Nick, eds. Calcium and bone disorders in children and adolescents. Basel: Karger, 2009.
Encontre o texto completo da fonteCamacho, Pauline M., ed. Metabolic Bone Diseases. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03694-2.
Texto completo da fontePaul, Grech, ed. Diagnosis of metabolic bone disease. London: Chapman and Hall Medical, 1985.
Encontre o texto completo da fonteC, Nordin B. E., Need A. G e Morris H. A, eds. Metabolic bone and stone disease. 3a ed. Edinburgh: Churchill Livingstone, 1993.
Encontre o texto completo da fonteSalvador, Castells, e Finberg Laurence, eds. Metabolic bone disease in children. New York: M. Dekker, 1990.
Encontre o texto completo da fonteS, Tam Cherk, Heersche Johannes N. M e Murray Timothy M, eds. Metabolic bone disease: Cellular and tissue mechanisms. Boca Raton, Fla: CRC Press, 1988.
Encontre o texto completo da fonteC, Stevenson John, ed. New techniques in metabolic bone disease. London: Wright, 1990.
Encontre o texto completo da fonteW, Weissman Barbara N., ed. Imaging of arthritis and metabolic bone disease. Philadelphia, PA: Mosby/Elsevier, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Bone Diseases, Metabolic – physiopathology"
Adams, J. E. "Metabolic Bone Disease". In Musculoskeletal Diseases, 89–105. Milano: Springer Milan, 2005. http://dx.doi.org/10.1007/88-470-0339-3_14.
Texto completo da fonteAdler, Claus-Peter. "Metabolic and Storage Diseases". In Bone Diseases, 183–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04088-1_9.
Texto completo da fonteBahk, Yong Whee. "Metabolic Bone Diseases". In Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases, 163–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06294-4_13.
Texto completo da fonteThijn, Cornelis J. P. "Metabolic Bone Diseases". In Radiology of the Hand, 147–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-50966-7_6.
Texto completo da fonteBotton, Miguel, António Robalo Correia e Manuel Cassiano Neves. "Metabolic Bone Diseases". In General Orthopaedics and Basic Science, 73–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92193-8_10.
Texto completo da fonteBahk, Yong-Whee. "Metabolic Bone Diseases". In Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases, 189–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04106-2_13.
Texto completo da fonteAithal, Hari Prasad, Amar Pal, Prakash Kinjavdekar e Abhijit M. Pawde. "Metabolic Bone Diseases". In Textbook of Veterinary Orthopaedic Surgery, 327–51. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2575-9_9.
Texto completo da fontevan Daele, P. L. A., e M. C. Zillikens. "Metabolic bone diseases". In Orthopaedics and Traumatology, 335–47. Houten: Bohn Stafleu van Loghum, 2021. http://dx.doi.org/10.1007/978-90-368-2638-9_22.
Texto completo da fonteVande Berg, Bruno, Frederic Lecouvet, Paolo Simoni e Jacques Malghem. "Metabolic Bone Diseases". In Musculoskeletal Diseases 2009–2012, 94–103. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1378-0_16.
Texto completo da fonteJasim, Sina, Robert Wermers e Daniel L. Hurley. "Sclerotic Bone Disorders". In Metabolic Bone Diseases, 169–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03694-2_12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Bone Diseases, Metabolic – physiopathology"
Navada, Dinesh K. R., Ganesh S e Bhargavi K. "A High Precision Deep-CNN Framework for Classification of Metabolic Bone Diseases Among Women". In 2018 3rd International Conference on Communication and Electronics Systems (ICCES). IEEE, 2018. http://dx.doi.org/10.1109/cesys.2018.8724013.
Texto completo da fonteCox, L. G. E., C. C. van Donkelaar, B. van Rietbergen e K. Ito. "Mechanoregulated Bone Remodeling May Explain Bone Structural Changes Observed in Osteoarthritis". In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19583.
Texto completo da fontePenninger, Charles L., Neal M. Patel e Andrés Tovar. "A Novel HCA Framework for Simulating the Cellular Mechanisms of Bone Remodeling". In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70613.
Texto completo da fonteTakai, Erica, Clark T. Hung, Aurea Tucay, Djordje Djukic, Mary L. Linde, Kevin D. Costa, James T. Yardley e X. Edward Guo. "Design of a Microfluidic System for 3D Culture of Osteocytes In Vitro". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33229.
Texto completo da fonteTseng, Wei-Ju, Hainan Zhu, Beom Kang Huh, Chantal de Bakker, Shiming Luo, Juyu Tang, Ling Qin e X. Sherry Liu. "Assessment of the Vascular and Trabecular Microstructures Using Micro Computed Tomography, Vascular Network Perfusion, and Image Registration Techniques". In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14699.
Texto completo da fonteHoldstein, Y., e A. Fischer. "Modeling Micro-Scaffold-Based Implants for Bone Tissue Engineering". In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59034.
Texto completo da fonteZahirović, Nedim, Bojan Toholj, Marko Cincović, Ozren Smolec e Mimi Ristevski. "Lameness in heifers: Integration of biological, metabolic and production characteristics and environmental factors as predisposing for the occurence of lameness". In Zbornik radova 26. medunarodni kongres Mediteranske federacije za zdravlje i produkciju preživara - FeMeSPRum. Poljoprivredni fakultet Novi Sad, 2024. http://dx.doi.org/10.5937/femesprumns24040z.
Texto completo da fonteYadykina, T. K., N. N. Mikhailova e A. G. Zhukova. "BIOMEDICAL ASPECTS OF THE FORMATION OF METABOLIC MALADAPTATION IN CHRONIC OCCUPATIONAL INTOXICATION WITH FLUORIDE COMPOUNDS". In The 17th «OCCUPATION and HEALTH» Russian National Congress with International Participation (OHRNC-2023). FSBSI «IRIOH», 2023. http://dx.doi.org/10.31089/978-5-6042929-1-4-2023-1-535-539.
Texto completo da fonteLima, Rodrigo Quevedo de, Eimi Nascimento Pacheco, Luiz Henrique Santana de Araujo, Cassio Fernando Paganini e Katsuki Arima Tiscoski. "PLASMOBLASTIC LYMPHOMA WITH MAMMARY MANIFESTATION: A CASE REPORT". In Scientifc papers of XXIII Brazilian Breast Congress - 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s1085.
Texto completo da fonte