Artigos de revistas sobre o tema "Bone cells Metabolism"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Bone cells Metabolism".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
INOUE, HIROMASA. "Cells phagocytizing bone. Bone metabolism and osteoclast." Kagaku To Seibutsu 23, n.º 2 (1985): 99–102. http://dx.doi.org/10.1271/kagakutoseibutsu1962.23.99.
Texto completo da fonteShymanskyy, I. O., O. O. Lisakovska, A. O. Mazanova, D. O. Labudzynskyi, A. V. Khomenko e M. M. Veliky. "Prednisolone and vitamin D(3) modulate oxidative metabolism and cell death pathways in blood and bone marrow mononuclear cells". Ukrainian Biochemical Journal 88, n.º 5 (31 de outubro de 2016): 38–47. http://dx.doi.org/10.15407/ubj88.05.038.
Texto completo da fonteLocci, P., E. Becchetti, G. Venti, C. Lilli, L. Marinucci, E. Donti, G. Paludetti e M. Maurizi. "Glycosaminoglycan metabolism in otosclerotic bone cells". Biology of the Cell 86, n.º 1 (1996): 73–78. http://dx.doi.org/10.1111/j.1768-322x.1996.tb00958.x.
Texto completo da fonteBarry, Patrick. "Skeletal discovery: Bone cells affect metabolism". Science News 172, n.º 6 (30 de setembro de 2009): 83. http://dx.doi.org/10.1002/scin.2007.5591720602.
Texto completo da fonteMotyl, Katherine J., Anyonya R. Guntur, Adriana Lelis Carvalho e Clifford J. Rosen. "Energy Metabolism of Bone". Toxicologic Pathology 45, n.º 7 (outubro de 2017): 887–93. http://dx.doi.org/10.1177/0192623317737065.
Texto completo da fonteKumegawa, Masayoshi. "Role of Bone Cells in Bone Metabolism : Osteoclasts and Osteocytes". Journal of the Kyushu Dental Society 48, n.º 5 (1994): 640–43. http://dx.doi.org/10.2504/kds.48.640.
Texto completo da fonteRuzicska, Éva, e Gyula Poór. "Diabetes and bone metabolism". Orvosi Hetilap 152, n.º 29 (julho de 2011): 1156–60. http://dx.doi.org/10.1556/oh.2011.29147.
Texto completo da fonteAnderson, Paul H., Gerald J. Atkins, Andrew G. Turner, Masakazu Kogawa, David M. Findlay e Howard A. Morris. "Vitamin D metabolism within bone cells: Effects on bone structure and strength". Molecular and Cellular Endocrinology 347, n.º 1-2 (dezembro de 2011): 42–47. http://dx.doi.org/10.1016/j.mce.2011.05.024.
Texto completo da fonteKim, Haemin, Brian Oh e Kyung-Hyun Park-Min. "Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism". Cells 10, n.º 1 (7 de janeiro de 2021): 89. http://dx.doi.org/10.3390/cells10010089.
Texto completo da fonteKim, Haemin, Brian Oh e Kyung-Hyun Park-Min. "Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism". Cells 10, n.º 1 (7 de janeiro de 2021): 89. http://dx.doi.org/10.3390/cells10010089.
Texto completo da fonteWang, Qingxuan, Mengmeng Duan, Jingfeng Liao, Jing Xie e Chenchen Zhou. "Are Osteoclasts Mechanosensitive Cells?" Journal of Biomedical Nanotechnology 17, n.º 10 (1 de outubro de 2021): 1917–38. http://dx.doi.org/10.1166/jbn.2021.3171.
Texto completo da fonteAubin, Jane E. "Bone blood stem cells". Bone 43 (outubro de 2008): S15—S16. http://dx.doi.org/10.1016/j.bone.2008.07.018.
Texto completo da fonteZeng, Zhipeng, Xuchang Zhou, Yan Wang, Hong Cao, Jianmin Guo, Ping Wang, Yajing Yang e Yan Wang. "Mitophagy—A New Target of Bone Disease". Biomolecules 12, n.º 10 (4 de outubro de 2022): 1420. http://dx.doi.org/10.3390/biom12101420.
Texto completo da fonteMankani, Mahesh H., e Pamela Gehron Robey. "Transplantation of Bone-Forming Cells". Endocrinologist 8, n.º 6 (novembro de 1998): 459–68. http://dx.doi.org/10.1097/00019616-199811000-00009.
Texto completo da fonteQaw, Fuad S., Hugh L. J. Makin e Glenville Jones. "Metabolism of 25-hydroxydihydrotachysterol3 in bone cells in vitro". Steroids 57, n.º 5 (maio de 1992): 236–43. http://dx.doi.org/10.1016/0039-128x(92)90108-l.
Texto completo da fonteWestacott, Carole I., Ginette R. Webb, Mark G. Warnock, Jane V. Sims e Christopher J. Elson. "Alteration of cartilage metabolism by cells from osteoarthritic bone". Arthritis & Rheumatism 40, n.º 7 (julho de 1997): 1282–91. http://dx.doi.org/10.1002/1529-0131(199707)40:7<1282::aid-art13>3.0.co;2-e.
Texto completo da fonteCompston, JE. "Bone marrow and bone: a functional unit". Journal of Endocrinology 173, n.º 3 (1 de junho de 2002): 387–94. http://dx.doi.org/10.1677/joe.0.1730387.
Texto completo da fonteZhou, Xuchang, Hong Cao, Jianming Guo, Yu Yuan e Guoxin Ni. "Effects of BMSC-Derived EVs on Bone Metabolism". Pharmaceutics 14, n.º 5 (8 de maio de 2022): 1012. http://dx.doi.org/10.3390/pharmaceutics14051012.
Texto completo da fontePhulpin, Bérengère, Gilles Dolivet, Pierre-Yves Marie, Sylvain Poussier, Sandrine Huger, Pierre Bravetti, Pierre Graff, Jean-Louis Merlin e Nguyen Tran. "Feasibility of Treating Irradiated Bone with Intramedullary Delivered Autologous Mesenchymal Stem Cells". Journal of Biomedicine and Biotechnology 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/560257.
Texto completo da fonteZhou, Tao, Yuqing Yang, Qianming Chen e Liang Xie. "Glutamine Metabolism Is Essential for Stemness of Bone Marrow Mesenchymal Stem Cells and Bone Homeostasis". Stem Cells International 2019 (12 de setembro de 2019): 1–13. http://dx.doi.org/10.1155/2019/8928934.
Texto completo da fonteLyu, Zhong-Shi, Wei-Li Yao, Qi Wen, Hong-Yan Zhao, Fei-Fei Tang, Yu Wang, Lan-Ping Xu et al. "Glycolysis Restoration Attenuates Damaged Bone Marrow Endothelial Cells". Blood 134, Supplement_1 (13 de novembro de 2019): 2491. http://dx.doi.org/10.1182/blood-2019-122794.
Texto completo da fonteGromova, О. А., А. М. Lila, I. Yu Torshin e I. А. Reier. "Application of chondroprotective agents to inhibit osteodestructive processes in the subchondral bone in patients with osteoarthritis". FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology 15, n.º 1 (15 de março de 2022): 107–18. http://dx.doi.org/10.17749/2070-4909/farmakoekonomika.2022.126.
Texto completo da fonteGallagher, J. A., J. P. Dillon e C. E. Sheard. "Rhinoceros bone cells in culture". Bone 7, n.º 4 (1986): 313. http://dx.doi.org/10.1016/8756-3282(86)90247-4.
Texto completo da fonteAdams⁎, G. B. "Hematopoietic stem cells and bone☆". Bone 47 (junho de 2010): S22. http://dx.doi.org/10.1016/j.bone.2010.04.025.
Texto completo da fonteYankova, I., A. Shinkov e R. Kovatcheva. "Changes in Bone Metabolism and Structure in Primary Hyperparathyroidism". Acta Medica Bulgarica 47, n.º 4 (1 de novembro de 2020): 75–80. http://dx.doi.org/10.2478/amb-2020-0050.
Texto completo da fonteRiddle, Ryan C., e Thomas L. Clemens. "Bone Cell Bioenergetics and Skeletal Energy Homeostasis". Physiological Reviews 97, n.º 2 (abril de 2017): 667–98. http://dx.doi.org/10.1152/physrev.00022.2016.
Texto completo da fonteYin, Wenzhen, Ziru Li e Weizhen Zhang. "Modulation of Bone and Marrow Niche by Cholesterol". Nutrients 11, n.º 6 (21 de junho de 2019): 1394. http://dx.doi.org/10.3390/nu11061394.
Texto completo da fonteTencerova, Michaela, Meshail Okla e Moustapha Kassem. "Insulin Signaling in Bone Marrow Adipocytes". Current Osteoporosis Reports 17, n.º 6 (20 de novembro de 2019): 446–54. http://dx.doi.org/10.1007/s11914-019-00552-8.
Texto completo da fonteRothem, David E., Lilah Rothem, Michael Soudry, Aviva Dahan e Rami Eliakim. "Nicotine modulates bone metabolism-associated gene expression in osteoblast cells". Journal of Bone and Mineral Metabolism 27, n.º 5 (13 de maio de 2009): 555–61. http://dx.doi.org/10.1007/s00774-009-0075-5.
Texto completo da fonteJones, D. B., e J. T. Ryaby. "Pulsed magnetic fields affect differentiation not metabolism in bone cells". Bone 7, n.º 5 (janeiro de 1986): 396. http://dx.doi.org/10.1016/8756-3282(86)90292-9.
Texto completo da fonteGrayson, Warren L., Bruce A. Bunnell, Elizabeth Martin, Trivia Frazier, Ben P. Hung e Jeffrey M. Gimble. "Stromal cells and stem cells in clinical bone regeneration". Nature Reviews Endocrinology 11, n.º 3 (6 de janeiro de 2015): 140–50. http://dx.doi.org/10.1038/nrendo.2014.234.
Texto completo da fontePrideaux, Matt, Tom O'Connell e Yukiko Kitase. "THE ROLE OF PPARδ-DRIVEN β-OXIDATION IN BONE HEALTH DURING AGING". Innovation in Aging 6, Supplement_1 (1 de novembro de 2022): 410. http://dx.doi.org/10.1093/geroni/igac059.1611.
Texto completo da fonteForsberg, Jonathan A., Thomas A. Davis, Eric A. Elster e Jeffrey M. Gimble. "Burned to the Bone". Science Translational Medicine 6, n.º 255 (24 de setembro de 2014): 255fs37. http://dx.doi.org/10.1126/scitranslmed.3010168.
Texto completo da fonteChen, Qin, Krishna M. Sinha, Benoit de Crombrugghe e Ralf Krahe. "Osteoblast-Specific Overexpression of Nucleolar Protein NO66/RIOX1 in Mouse Embryos Leads to Osteoporosis in Adult Mice". Journal of Osteoporosis 2023 (10 de janeiro de 2023): 1–10. http://dx.doi.org/10.1155/2023/8998556.
Texto completo da fonteShiraliyev, O. K., T. F. Mamedov e Zh I. Gaghiyeva. "Hormones and osteoporosis". Problems of Endocrinology 40, n.º 3 (15 de dezembro de 1994): 49–52. http://dx.doi.org/10.14341/probl12019.
Texto completo da fonteSrivastava, Rupesh K., Leena Sapra e Pradyumna K. Mishra. "Osteometabolism: Metabolic Alterations in Bone Pathologies". Cells 11, n.º 23 (6 de dezembro de 2022): 3943. http://dx.doi.org/10.3390/cells11233943.
Texto completo da fonteIshijima, Muneaki, Kunikazu Tsuji, Susan R. Rittling, Teruhito Yamashita, Hisashi Kurosawa, David T. Denhardt, Akira Nifuji, Yoichi Ezura e Masaki Noda. "Osteopontin is required for mechanical stress-dependent signals to bone marrow cells". Journal of Endocrinology 193, n.º 2 (maio de 2007): 235–43. http://dx.doi.org/10.1677/joe.1.06704.
Texto completo da fonteNyssen-Behets, C., D. Xhema, T. Schubert, M. Schubert, B. Lengelé, C. Delloye e D. Dufrane. "Improvement of bone tissue allograft by mesenchymal stem cells: Bone marrow vs adipose stem cells". Bone 47 (junho de 2010): S128. http://dx.doi.org/10.1016/j.bone.2010.04.284.
Texto completo da fonteHoebertz, A., A. Townsend-Nicholson, R. Glass, G. Burnstock e T. R. Arnett. "Expression of P2 receptors in bone and cultured bone cells". Bone 27, n.º 4 (outubro de 2000): 503–10. http://dx.doi.org/10.1016/s8756-3282(00)00351-3.
Texto completo da fonteCornish, Jillian, Usha Bava, Karen E. Callon, Jizhong Bai, Dorit Naot e Ian R. Reid. "Bone-bound bisphosphonate inhibits growth of adjacent non-bone cells". Bone 49, n.º 4 (outubro de 2011): 710–16. http://dx.doi.org/10.1016/j.bone.2011.07.020.
Texto completo da fonteFujita, Takuo. "Calcium, cells and bone". Journal of Bone and Mineral Metabolism 6, n.º 1 (março de 1988): 1–2. http://dx.doi.org/10.1007/bf02378732.
Texto completo da fonteWang, Chunyu, Li Tian, Kun Zhang, Yaxi Chen, Xiang Chen, Ying Xie, Qian Zhao e Xijie Yu. "Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss". Journal of Molecular Endocrinology 57, n.º 3 (outubro de 2016): 161–70. http://dx.doi.org/10.1530/jme-16-0076.
Texto completo da fonteSinger, Frederick R., Barbara G. Mills, Helen E. Gruber, Jolene J. Windle e G. David Roodman. "Ultrastructure of Bone Cells in Paget's Disease of Bone". Journal of Bone and Mineral Research 21, S2 (dezembro de 2006): P51—P54. http://dx.doi.org/10.1359/jbmr.06s209.
Texto completo da fonteMartin, Shailer B., William S. Reiche, Nicholas A. Fifelski, Alexander J. Schultz, Spencer J. Stanford, Alexander A. Martin, Danielle L. Nack, Bernhard Radlwimmer, Michael P. Boyer e Elitsa A. Ananieva. "Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling". Biochemical Journal 477, n.º 9 (5 de maio de 2020): 1579–99. http://dx.doi.org/10.1042/bcj20190754.
Texto completo da fonteAllain, T. J., T. J. Chambers, A. M. Flanagan e A. M. McGregor. "Tri-iodothyronine stimulates rat osteoclastic bone resorption by an indirect effect". Journal of Endocrinology 133, n.º 3 (junho de 1992): 327–31. http://dx.doi.org/10.1677/joe.0.1330327.
Texto completo da fonteAnastasilakis, Athanasios D., Marina Tsoli, Gregory Kaltsas e Polyzois Makras. "Bone metabolism in Langerhans cell histiocytosis". Endocrine Connections 7, n.º 7 (julho de 2018): R246—R253. http://dx.doi.org/10.1530/ec-18-0186.
Texto completo da fonteOmata, Yasunori, Michael Frech, Taku Saito, Georg Schett, Mario M. Zaiss e Sakae Tanaka. "Inflammatory Arthritis and Bone Metabolism Regulated by Type 2 Innate and Adaptive Immunity". International Journal of Molecular Sciences 23, n.º 3 (20 de janeiro de 2022): 1104. http://dx.doi.org/10.3390/ijms23031104.
Texto completo da fonteImai, K., M. W. Neuman, T. Kawase e S. Saito. "Calcium in osteoblast-enriched bone cells". Bone 13, n.º 3 (maio de 1992): 217–23. http://dx.doi.org/10.1016/8756-3282(92)90200-g.
Texto completo da fonteMontjovent, Marc-Olivier, Nathalie Burri, Silke Mark, Ermanno Federici, Corinne Scaletta, Pierre-Yves Zambelli, Patrick Hohlfeld, Pierre-François Leyvraz, Lee L. Applegate e Dominique P. Pioletti. "Fetal bone cells for tissue engineering". Bone 35, n.º 6 (dezembro de 2004): 1323–33. http://dx.doi.org/10.1016/j.bone.2004.07.001.
Texto completo da fonteSchett, G. "T and B cells and bone". Bone 48 (maio de 2011): S56—S57. http://dx.doi.org/10.1016/j.bone.2011.03.030.
Texto completo da fonte