Literatura científica selecionada sobre o tema "Bone cells"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Bone cells".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Bone cells"
Ahmed Elkammar, Hala. "Effect of human bone marrow derived mesenchymal stem cells on squamous cell carcinoma cell line". International Journal of Academic Research 6, n.º 1 (30 de janeiro de 2014): 110–16. http://dx.doi.org/10.7813/2075-4124.2014/6-1/a.14.
Texto completo da fonteZahran, Faten, Ahmed Abdel Zaher Ahmed Abdel.Zaher, Nermin Raafat e Mohamed Ali Mohamed Ali. "Hepatocyte derived from Rat Bone Marrow Mesenchymal Stem Cells". Indian Journal of Applied Research 3, n.º 10 (1 de outubro de 2011): 1–5. http://dx.doi.org/10.15373/2249555x/oct2013/135.
Texto completo da fonteRemyaV, RemyaV, Naveen Kumar e Kutty M. V. H. Kutty M.V.H. "A Method for Cell Culture and RNA Extraction of Rabbit Bone Marrow Derived Mesenchymal Stem Cells". International Journal of Scientific Research 3, n.º 7 (1 de junho de 2012): 31–33. http://dx.doi.org/10.15373/22778179/july2014/11.
Texto completo da fonteVan Epps, Heather L. "Bone cells unite". Journal of Experimental Medicine 202, n.º 3 (1 de agosto de 2005): 335. http://dx.doi.org/10.1084/jem2023iti3.
Texto completo da fonteAubin, Jane E. "Bone stem cells". Journal of Cellular Biochemistry 72, S30-31 (1998): 73–82. http://dx.doi.org/10.1002/(sici)1097-4644(1998)72:30/31+<73::aid-jcb11>3.0.co;2-l.
Texto completo da fonteHashimoto, Futoshi, Kikuya Sugiura, Kyoichi Inoue e Susumu Ikehara. "Major Histocompatibility Complex Restriction Between Hematopoietic Stem Cells and Stromal Cells In Vivo". Blood 89, n.º 1 (1 de janeiro de 1997): 49–54. http://dx.doi.org/10.1182/blood.v89.1.49.
Texto completo da fonteHashimoto, Futoshi, Kikuya Sugiura, Kyoichi Inoue e Susumu Ikehara. "Major Histocompatibility Complex Restriction Between Hematopoietic Stem Cells and Stromal Cells In Vivo". Blood 89, n.º 1 (1 de janeiro de 1997): 49–54. http://dx.doi.org/10.1182/blood.v89.1.49.49_49_54.
Texto completo da fonteChambers, T. J., e K. Fuller. "Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact". Journal of Cell Science 76, n.º 1 (1 de junho de 1985): 155–65. http://dx.doi.org/10.1242/jcs.76.1.155.
Texto completo da fonteINOUE, HIROMASA. "Cells phagocytizing bone. Bone metabolism and osteoclast." Kagaku To Seibutsu 23, n.º 2 (1985): 99–102. http://dx.doi.org/10.1271/kagakutoseibutsu1962.23.99.
Texto completo da fonteKelder, Cindy, Cornelis J. Kleverlaan, Marjolijn Gilijamse, Astrid D. Bakker e Teun J. de Vries. "Cells Derived from Human Long Bone Appear More Differentiated and More Actively Stimulate Osteoclastogenesis Compared to Alveolar Bone-Derived Cells". International Journal of Molecular Sciences 21, n.º 14 (17 de julho de 2020): 5072. http://dx.doi.org/10.3390/ijms21145072.
Texto completo da fonteTeses / dissertações sobre o assunto "Bone cells"
Fong, Jenna. "Breast cancer cells affect bone cell differentiation and the bone microenvironment". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104758.
Texto completo da fonteLe cancer du sein est le cancer plus diagnostiqué chez les femmes. On estime qu'environ une femme sur sept en sera affectée. La diffusion du cancer du sein aux emplacements secondaires est généralement incurable. L'os est l'emplacement préféré de la métastase, où le développement d'une tumeur secondaire cause de l'osteolyse, de l'hypercalcemie, et une douleur considérable. Cependant, comment les cellules de cancer du sein établissent des interactions supportifs avec des cellules d'os n'est pas bien compris. Nous avons examiné les effets des facteurs libérés des cellules du cancer du sein MDA-MB-231 et 4T1 sur la différentiation des cellules de moelle de la souris C57BL6. Le traitement avec des facteurs cancer-dérivés a produit une diminution de 40-60% des marqueurs de différentiation d'osteoblast, comparé au traitement par l'acide ascorbique, et a induit un changement osteoclastogenique dans le rapport du RANKL/osteoprotegerin. L'exposition des cellules d'os à des facteurs dérivés du cancer du sein a ensuite stimulé l'attachement des cellules cancéreuses aux osteoblasts non mûrs. L'inhibition du γ-secretase utilisant les inhibiteurs pharmacologiques DAPT et le Compound E a complètement inversé l'osteoclastogenise cancer-induit aussi bien que le perfectionnement cancer-induit de l'attachement de cellules cancéreuses, identifiant l'activité de le γ-secretase comme étant le médiateur principal de ces effets. Nous avons ensuite évalué les effets des cellules cancereuse sur le métabolisme énergétique des cellules d'os. Le traitement des cellules de moelle avec le medium conditionné des cellules du cancer du sein 4T1 a eu comme conséquence une augmentation des mitochondries à haut-potentiel de membrane, une augmentation de 2.3 fois le contenu cellulaire de triphosphate d'adénosine, et une consommation plus rapide du glucose. Ce changement de l'énergétique a été accompagné d'une stimulation d'AMPK dans la protéine et l'ADN messagère. Pour évaluer les effets du statut de haute énergie dans les osteoclasts, nous avons élevé l'énergique des osteoclasts avec du pyruvate de sodium. Cette addition a causée une croissance des osteoclasts, avec des plus grands nucleus, et la résorption de plus de substrat. Ainsi, nous avons découvert l'osteoblast comme étant un intermédiaire clé à la signalisation prémetastatique par des cellules du cancer du sein. Nous avons aussi indiqué le γ-secretase comme cible robuste pour le developpement de thérapeutique potentiellement capable de réduire l'autoguidage et la progression des métastases de cancer à l'os. Additonellement, nous avons découvert l'énergétique intensifiée chez les cellules d'os exposées aux facteurs cellule-libérés par le cancer du sein, qui mène à une osteoclastogenesise plus active et plus importante. La modification de la voie d'AMPK peut s'avérer être une cible thérapeutique importante pour que la métastase de cancer du sein aux os.
Hoebertz, Astrid. "Purinergic signalling in bone cells". Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249706.
Texto completo da fonteLaketic-Ljubojevic, Ira. "Glutamate signalling in bone cells". Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311080.
Texto completo da fonteMalone, Amanda Michelle Dolphin. "Mechanotransduction mechanisms in bone cells /". May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texto completo da fontePorter, Ryan Michael. "Examination of Glucocorticoid Treatment on Bone Marrow Stroma: Implications for Bone Disease and Applied Bone Regeneration". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/36365.
Texto completo da fonteMaster of Science
Bennett, Jonathan Hilary. "The differentiation of osteogenic cells from bone marrow". Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:3460f26e-a124-4605-8601-2e300241de14.
Texto completo da fonteGronthos, Stan. "Stromal precursor cells : purification and the development of bone tissue". Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phg8757.pdf.
Texto completo da fonteKandimalla, Yugandhar. "Study of Chitosan Microparticles with Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration". University of Toledo Health Science Campus / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=mco1250778129.
Texto completo da fonteWigzell, Cathy. "Differentiation of bone cells in vitro". Thesis, University of St Andrews, 1990. http://hdl.handle.net/10023/14070.
Texto completo da fonteWeber, Matthew Charles. "Engineering human bone marrow stromal cells". Case Western Reserve University School of Graduate Studies / OhioLINK, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=case1055867071.
Texto completo da fonteLivros sobre o assunto "Bone cells"
Bone research protocols. 2a ed. New York: Humana Press, 2012.
Encontre o texto completo da fonteA manual for differentiation of bone marrow-derived stem cells to specific cell types. New Jersey: World Scientific, 2014.
Encontre o texto completo da fontePathology of bone marrow and blood cells. 2a ed. Baltimore, Md: Lippincott William & Wilkins, 2009.
Encontre o texto completo da fonteThomas, Gethin Penar. Load responsiveness of bone marrow stromal cells. Birmingham: University of Birmingham, 1994.
Encontre o texto completo da fontePreston, Michael Robert. Signal transducing ion channels of bone cells. Birmingham: University of Birmingham, 1997.
Encontre o texto completo da fonteGu, Yuchun. Investigation of ion channels on bone cells. Birmingham: University of Birmingham, 2000.
Encontre o texto completo da fonteDiggs, L. W. The morphology of human blood cells. 6a ed. Abbott Park, Ill: Abbott Laboratories, 2003.
Encontre o texto completo da fonteInternational Workshop on Cells and Cytokines in Bone and Cartilage (2nd 1988 Davos, Switzerland). Second International Workshop on Cells and Cytokines in Bone and Cartilage: 9-12 April 1988, Davos, Switzerland : abstracts. New York, N.Y: Springer International, 1988.
Encontre o texto completo da fonteInternational, Workshop on Cells and Cytokines in Bone and Cartilage (3rd 1990 Davos Switzerland). Third International Workshop on Cells and Cytokines in Bone and Cartilage: 8-11 April 1990, Davos, Switzerland : abstracts. New York, N.Y: Springer International, 1990.
Encontre o texto completo da fonteAntin, Joseph H. Manual of stem cell and bone marrow transplantation. New York: Cambridge University Press, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Bone cells"
Oranger, Angela, Graziana Colaianni e Maria Grano. "Bone Cells". In Imaging of Prosthetic Joints, 3–13. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5483-7_1.
Texto completo da fonteGooch, Keith J., e Christopher J. Tennant. "Bone Cells". In Mechanical Forces: Their Effects on Cells and Tissues, 55–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03420-0_3.
Texto completo da fonteReza Rezaie, Hamid, Mohammad Hossein Esnaashary, Masoud Karfarma e Andreas Öchsner. "Productivity: Cells". In Bone Cement, 43–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39716-6_3.
Texto completo da fonteOni, Olusola O. A., S. Dearing e S. Pringle. "Endothelial Cells and Bone Cells". In Bone Circulation and Vascularization in Normal and Pathological Conditions, 43–48. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2838-8_5.
Texto completo da fonteNakano, Toru, Takumi Era, Hiroaki Kodama e Tasuku Honjo. "Development of Blood Cells from Mouse Embryonic Stem Cells in Culture". In Bone Marrow Transplantation, 9–19. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-68320-9_2.
Texto completo da fonteGotfried, Y., J. Yaremchuk, M. A. Randolph e A. J. Weiland. "The Target Cells in Vascularized Bone Allografts". In Bone Transplantation, 111–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83571-1_17.
Texto completo da fonteBoyce, B. F., D. E. Hughes, K. R. Wright, L. Xing e A. Dai. "Apoptosis in Bone Cells". In Novel Approaches to Treatment of Osteoporosis, 61–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-09007-7_3.
Texto completo da fonteBarcellos-Hoff, Mary Helen. "Bone Marrow-derived Cells". In Encyclopedia of Systems Biology, 152–54. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1395.
Texto completo da fonteDuong, Minh Ngoc, Yu-Ting Ma e Ray C. J. Chiu. "Bone Marrow Stem Cells". In Methods in Molecular Biology, 33–46. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-511-8_3.
Texto completo da fonteHo, A. D., e W. Wagner. "Bone Marrow Niche and Leukemia". In Cancer Stem Cells, 125–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/2789_2007_048.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Bone cells"
Ominsky, Michael S., Philippe K. Zysset e Steven A. Goldstein. "Elastic Properties of 3D Cells for Trabecular Bone: Digital vs. Structural Finite Element Models". In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0201.
Texto completo da fonteShikata, Tetsuo, Toshihiko Shiraishi, Kumiko Tanaka, Shin Morishita e Ryohei Takeuchi. "Effects of Amplitude and Frequency of Vibration Stimulation on Cultured Osteoblasts". In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34949.
Texto completo da fonteRomito, Marilisa, Konstantina M. Stankovic e Demetri Psaltis. "Imaging of cochlear cells through scattering bone". In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.111.
Texto completo da fonteGanji, Yasaman, e Mehran Kasra. "Comparison of Mechanosensitivity of Human Primary-Cultured Osteoblast Cells and Human Osteosarcoma Cell Line Under Hydrostatic Pressure". In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80030.
Texto completo da fonteUddin, Sardar M. Zia, e Yi-Xian Qin. "Anabolic Effects of Ultrasound as Countermeasures of Simulated Microgravity in In-Vitro and In-Vivo Functional Disuse Models". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53796.
Texto completo da fonteCowin, Stephen C. "The Search for Mechanism in Bone Adaptation Studies". In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1929.
Texto completo da fonteLan, Sheeny K., Daniel N. Prater, Russell D. Jamison, David A. Ingram, Mervin C. Yoder e Amy J. Wagoner Johnson. "Vasculogenic Potential of Porcine Endothelial Colony Forming Cells". In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192848.
Texto completo da fonteJeon, Jong Heon, Tae Kyung Kim, So Hee Park, Jung Wook Shin e Ok Chan Jeong. "Experimental Study on Cytoplasmic Calcium Oscillation in MG-63 Cells Induced by Pressure-Driven Fluid Flow". In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11121.
Texto completo da fonteSrinivasan, Jayendran, Vincent Kish, Sydha Salihu, Madhavi Ayyalasomayajula e Nilay Mukherjee. "Poking Cells in Cell-Gel Constructs: A Potential Way of Measuring Fluid Pressure in Cells". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61290.
Texto completo da fonteMillon, Debra Chenet, Darren L. Hitt e Stephan J. LaPointe. "Heat Generation in Bone Cutting-Implications for Thermal Necrosis". In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24430.
Texto completo da fonteRelatórios de organizações sobre o assunto "Bone cells"
Dooner, Mark, Jason M. Aliotta, Jeffrey Pimental, Gerri J. Dooner, Mehrdad Abedi, Gerald Colvin, Qin Liu, Heinz-Ulli Weier, Mark S. Dooner e Peter J. Quesenberry. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells. Office of Scientific and Technical Information (OSTI), dezembro de 2007. http://dx.doi.org/10.2172/936517.
Texto completo da fonteMastro, Andrea M. Trafficking of Metastatic Breast Cancer Cells in Bone. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2004. http://dx.doi.org/10.21236/ada433936.
Texto completo da fonteMastro, Andrea M. Trafficking of Metastatic Breast Cancer Cells in Bone. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2006. http://dx.doi.org/10.21236/ada460748.
Texto completo da fonteGay, Carol V. Directed Secretion by Bone Cells of a Factor that Attracts Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2001. http://dx.doi.org/10.21236/ada398984.
Texto completo da fontePark, Serk I. Activation of Myeloid-Derived Suppressor Cells in Bone Marrow. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2013. http://dx.doi.org/10.21236/ada600504.
Texto completo da fonteDonohue, Henry J., Christopher Niyibizi e Alayna Loiselle. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2013. http://dx.doi.org/10.21236/ada606237.
Texto completo da fonteDonahue, Henry J. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss. Fort Belvoir, VA: Defense Technical Information Center, julho de 2012. http://dx.doi.org/10.21236/ada581680.
Texto completo da fonteShevde-Samant, Lalita. Crosstalk Between Cancer Cells and Bones Via the Hedgehog Pathway Determines Bone Metastasis of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junho de 2008. http://dx.doi.org/10.21236/ada487471.
Texto completo da fonteDonahue, Henry J. Fluid Flow Sensitivity of Bone Cells as a Function of Age. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2001. http://dx.doi.org/10.21236/ada401057.
Texto completo da fonteMajeska, Robert J., e Mitchell B. Schaffler. Role of Bone Remodeling in Skeletal Colonization by Prostate Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2005. http://dx.doi.org/10.21236/ada444893.
Texto completo da fonte