Artigos de revistas sobre o tema "Blade grid"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Blade grid".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Balalaiev, Anton, Kateryna Balalaieva, Maryna Pikul e Grygoriy Golembiyevskyy. "Власні частоти коливань композитної решітчастої дворядної лопатки вентилятора ТРДД". Aerospace Technic and Technology, n.º 4 (29 de agosto de 2024): 49–57. http://dx.doi.org/10.32620/aktt.2024.4.06.
Texto completo da fonteBohn, D. E., e N. Moritz. "Algebraic method for efficient adaption of structured grids to fluctuating geometries". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 219, n.º 4 (1 de junho de 2005): 303–14. http://dx.doi.org/10.1243/095765005x7619.
Texto completo da fonteProcházka, Pavel, Václav Uruba, Luděk Pešek e VÍtězslav Bula. "On the effect of moving blade grid on the flow field characteristics". EPJ Web of Conferences 180 (2018): 02086. http://dx.doi.org/10.1051/epjconf/201818002086.
Texto completo da fonteTuncer, I. H., S. Weber e W. Sanz. "Investigation of Periodic Boundary Conditions in Multipassage Cascade Flows Using Overset Grids". Journal of Turbomachinery 121, n.º 2 (1 de abril de 1999): 341–47. http://dx.doi.org/10.1115/1.2841320.
Texto completo da fonteZadeh, Saman Naghib, Matin Komeili e Marius Paraschivoiu. "MESH CONVERGENCE STUDY FOR 2-D STRAIGHT-BLADE VERTICAL AXIS WIND TURBINE SIMULATIONS AND ESTIMATION FOR 3-D SIMULATIONS". Transactions of the Canadian Society for Mechanical Engineering 38, n.º 4 (dezembro de 2014): 487–504. http://dx.doi.org/10.1139/tcsme-2014-0032.
Texto completo da fonteMarin, Ambroise, Emmanuel Denimal, Stéphane Guyot, Ludovic Journaux e Paul Molin. "A Robust Generic Method for Grid Detection in White Light Microscopy Malassez Blade Images in the Context of Cell Counting". Microscopy and Microanalysis 21, n.º 1 (16 de dezembro de 2014): 239–48. http://dx.doi.org/10.1017/s1431927614013671.
Texto completo da fonteAbdullah, Bestoon, Vadim Varsegov e Adolf Limansky. "CENTRIFUGAL COMPRESSOR HEAD CHARACTERISTIC OF A MICRO TURBOJET ENGINE BASED ON NUMERICAL SIMULATION". Perm National Research Polytechnic University Aerospace Engineering Bulletin, n.º 62 (2020): 5–11. http://dx.doi.org/10.15593/2224-9982/2020.62.01.
Texto completo da fonteVershkov, V. A., B. S. Kritsky e R. M. Mirgazov. "FEATURES OF MODELING THE FLOW AROUND THE HELICOPTER MAIN ROTOR TAKING INTO ACCOUNT ARBITRARY BLADES MOTION". Civil Aviation High TECHNOLOGIES 22, n.º 3 (29 de junho de 2019): 25–34. http://dx.doi.org/10.26467/2079-0619-2019-22-3-25-34.
Texto completo da fonteBahaghighat, Mahdi, e Seyed Motamedi. "Vision inspection and monitoring of wind turbine farms in emerging smart grids". Facta universitatis - series: Electronics and Energetics 31, n.º 2 (2018): 287–301. http://dx.doi.org/10.2298/fuee1802287b.
Texto completo da fonteLi, Xue Feng, Xiu Quan Huang e Chao Liu. "Numerical Simulation Method for Fluid-Structure Interaction in Compressor Blades". Applied Mechanics and Materials 488-489 (janeiro de 2014): 914–17. http://dx.doi.org/10.4028/www.scientific.net/amm.488-489.914.
Texto completo da fonteXue, Dang Qin, De Yong Lv, Jia Xi Zhang e Shu Lin Hou. "The Optimization on Grid Division Methods of Blade Pump Blades Based on CFD". Applied Mechanics and Materials 635-637 (setembro de 2014): 35–39. http://dx.doi.org/10.4028/www.scientific.net/amm.635-637.35.
Texto completo da fonteVershkov, V. A. "ALGORITHM OF MESH DEFORMATION FOR ACCOUNTING CYCLIC BLADE CONTROL AND BLADES FLAPPING IN THE PROBLEM OF HELICOPTER MAIN ROTOR MODELING". Civil Aviation High TECHNOLOGIES 22, n.º 2 (24 de abril de 2019): 62–74. http://dx.doi.org/10.26467/2079-0619-2019-22-2-62-74.
Texto completo da fonteYang, Wei Min, Wen Juan Bai, Min Min Du e Ti Kun Shan. "The Meshing of the Fan Blade of Scenery Tower Power Generation Device". Key Engineering Materials 561 (julho de 2013): 688–91. http://dx.doi.org/10.4028/www.scientific.net/kem.561.688.
Texto completo da fontePopova, Diana, Denis Popov e Nikita Samoylenko. "INVESTIGATION OF THE GRID MODEL AND TURBULENCE MODEL PARAMETERS INFLUENCE ON QUALITY OF TURBINE ROTOR BLADE TIP CLEARANCE AREA AERODYNAMIC PROCESSES MODELING". Perm National Research Polytechnic University Aerospace Engineering Bulletin, n.º 66 (2021): 67–78. http://dx.doi.org/10.15593/2224-9982/2021.66.07.
Texto completo da fonte., Sutrisno, Setyawan Bekti Wibowo e Sigit Iswahyudi. "Numerical Research on the Vortex Center on the Forward-Swept 3-D Wind Turbine Blades at Low Rotational Speed". Modern Applied Science 12, n.º 12 (16 de novembro de 2018): 80. http://dx.doi.org/10.5539/mas.v12n12p80.
Texto completo da fonteSHEVKUN, NIKOLAY A. "Heat recovery plant: ways to improve energy efficiency". Agricultural Engineering, n.º 6 (2023): 4–9. http://dx.doi.org/10.26897/2687-1149-2023-6-4-9.
Texto completo da fonteRoy, Lalit, Kellis Kincaid, Roohany Mahmud e David W. MacPhee. "Double-Multiple Streamtube Analysis of a Flexible Vertical Axis Wind Turbine". Fluids 6, n.º 3 (13 de março de 2021): 118. http://dx.doi.org/10.3390/fluids6030118.
Texto completo da fonteSun, Da-Gang, Jin-Jun Guo, Yong Song, Bi-juan Yan, Zhan-Long Li e Hong-Ning Zhang. "Flutter stability analysis of a perforated damping blade for large wind turbines". Journal of Sandwich Structures & Materials 21, n.º 3 (28 de abril de 2017): 973–89. http://dx.doi.org/10.1177/1099636217705290.
Texto completo da fonteReese, Hauke, Chisachi Kato e Thomas H. Carolus. "Large Eddy Simulation of Acoustical Sources in a Low Pressure Axial-Flow Fan Encountering Highly Turbulent Inflow". Journal of Fluids Engineering 129, n.º 3 (5 de outubro de 2006): 263–72. http://dx.doi.org/10.1115/1.2427077.
Texto completo da fonteChen, S. H., A. H. Eastland e E. D. Jackson. "Unsteady Aerodynamic Analysis of Subsonic Oscillating Cascade". Journal of Turbomachinery 116, n.º 3 (1 de julho de 1994): 501–12. http://dx.doi.org/10.1115/1.2929439.
Texto completo da fonteAbras, Jennifer N., C. Eric Lynch e Marilyn J. Smith. "Computational Fluid Dynamics–Computational Structural Dynamics Rotor Coupling Using an Unstructured Reynolds-Averaged Navier–Stokes Methodology". Journal of the American Helicopter Society 57, n.º 1 (1 de janeiro de 2012): 1–14. http://dx.doi.org/10.4050/jahs.57.012001.
Texto completo da fonteZhong, B., e N. Qin. "Non-inertial multiblock Navier-Stokes calculation for hovering rotor flowfields using relative velocity approach". Aeronautical Journal 105, n.º 1049 (julho de 2001): 379–89. http://dx.doi.org/10.1017/s000192400001229x.
Texto completo da fonteBALIKOĞLU, Fatih, Tayfur Kerem Demircioğlu e Ali IŞIKTAŞ. "Mechanical Properties Of Sandwich Composites Used For Aerofoil Shell Structures Of Wind Turbine Blade". ICONTECH INTERNATIONAL JOURNAL 5, n.º 1 (28 de março de 2021): 26–37. http://dx.doi.org/10.46291/icontechvol5iss1pp26-37.
Texto completo da fonteZhou, Weidong, Zhimei Zhao, T. S. Lee e S. H. Winoto. "Investigation of Flow Through Centrifugal Pump Impellers Using Computational Fluid Dynamics". International Journal of Rotating Machinery 9, n.º 1 (2003): 49–61. http://dx.doi.org/10.1155/s1023621x0300006x.
Texto completo da fonteBasson, A., e B. Lakshminarayana. "Numerical Simulation of Tip Clearance Effects in Turbomachinery". Journal of Turbomachinery 117, n.º 3 (1 de julho de 1995): 348–59. http://dx.doi.org/10.1115/1.2835668.
Texto completo da fonteAlhrshy, L., e C. Jauch. "A Resource-Efficient Design for a Flexible Hydraulic-Pneumatic Flywheel in Wind Turbine Blades". Journal of Physics: Conference Series 2265, n.º 3 (1 de maio de 2022): 032018. http://dx.doi.org/10.1088/1742-6596/2265/3/032018.
Texto completo da fonteJamaluddin, Nur Syafiqah, Alper Celik, Kabilan Baskaran, Djamel Rezgui e Mahdi Azarpeyvand. "Experimental Analysis of Rotor Blade Noise in Edgewise Turbulence". Aerospace 10, n.º 6 (25 de maio de 2023): 502. http://dx.doi.org/10.3390/aerospace10060502.
Texto completo da fonteClarke, Ryan W., Erik G. Rognerud, Allen Puente-Urbina, David Barnes, Paul Murdy, Michael L. McGraw, Jimmy M. Newkirk et al. "Manufacture and testing of biomass-derivable thermosets for wind blade recycling". Science 385, n.º 6711 (23 de agosto de 2024): 854–60. http://dx.doi.org/10.1126/science.adp5395.
Texto completo da fonteXu, Lianchen, Xiaohui Jin, Zhen Li, Wanquan Deng, Demin Liu e Xiaobing Liu. "Particle Image Velocimetry Test for the Inter-Blade Vortex in a Francis Turbine". Processes 9, n.º 11 (4 de novembro de 2021): 1968. http://dx.doi.org/10.3390/pr9111968.
Texto completo da fonteZheng, M., L. Zhang, H. P. Teng, J. Hu e M. L. Hu. "Power efficiency of multi-blade drag typed VAWT by CFD simulation". International Review of Applied Sciences and Engineering 9, n.º 1 (junho de 2018): 25–29. http://dx.doi.org/10.1556/1848.2018.9.1.4.
Texto completo da fonteZhang, L., e J. C. Han. "Combined Effect of Free-Stream Turbulence and Unsteady Wake on Heat Transfer Coefficients From a Gas Turbine Blade". Journal of Heat Transfer 117, n.º 2 (1 de maio de 1995): 296–302. http://dx.doi.org/10.1115/1.2822520.
Texto completo da fonteAllen, C. B. "CHIMERA volume grid generation within the EROS code". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 214, n.º 3 (1 de março de 2000): 125–41. http://dx.doi.org/10.1243/0954410001531962.
Texto completo da fonteArnone, A., e R. C. Swanson. "A Navier–Stokes Solver for Turbomachinery Applications". Journal of Turbomachinery 115, n.º 2 (1 de abril de 1993): 305–13. http://dx.doi.org/10.1115/1.2929236.
Texto completo da fonteLi, Zheng, Wenda Zhang, Hao Dong e Yongsheng Tian. "Performance Analysis and Structure Optimization of a Nautilus Isometric Spiral Wind Turbine". Energies 13, n.º 1 (25 de dezembro de 2019): 120. http://dx.doi.org/10.3390/en13010120.
Texto completo da fonteDemeulenaere, A., O. Léonard e R. Van den Braembussche. "A two-dimensional Navier—Stokes inverse solver for compressor and turbine blade design". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 211, n.º 4 (1 de junho de 1997): 299–307. http://dx.doi.org/10.1243/0957650971537204.
Texto completo da fonteKulkarni, Siddharth Suhas, Craig Chapman, Hanifa Shah e David John Edwards. "A computational design method for bio-mimicked horizontal axis tidal turbines". International Journal of Building Pathology and Adaptation 36, n.º 2 (14 de maio de 2018): 188–209. http://dx.doi.org/10.1108/ijbpa-06-2017-0029.
Texto completo da fonteShahsavari, A., e M. Nili-Ahmadabadi. "Investigation of an innovative non-free vortex aerodynamic procedure to design a single-stage transonic compressor". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, n.º 11 (8 de junho de 2017): 2132–43. http://dx.doi.org/10.1177/0954410017710272.
Texto completo da fonteSun, Yan, Guohua Xu e Yongjie Shi. "Numerical Investigation of an Unsteady Blade Surface Blowing Method to Reduce Rotor Blade-Vortex Interaction Noise". International Journal of Aerospace Engineering 2022 (27 de agosto de 2022): 1–19. http://dx.doi.org/10.1155/2022/9647206.
Texto completo da fonteHenderson, Alan D., Gregory J. Walker e Jeremy D. Hughes. "The Influence of Turbulence on Wake Dispersion and Blade Row Interaction in an Axial Compressor". Journal of Turbomachinery 128, n.º 1 (1 de fevereiro de 2005): 150–57. http://dx.doi.org/10.1115/1.2098809.
Texto completo da fonteCong, Cong. "Decentralized control of vibrations in wind turbines using multiple active tuned mass dampers with stroke constraint". Advances in Mechanical Engineering 10, n.º 12 (dezembro de 2018): 168781401881675. http://dx.doi.org/10.1177/1687814018816756.
Texto completo da fonteHall, K. C., e C. B. Lorence. "Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations". Journal of Turbomachinery 115, n.º 4 (1 de outubro de 1993): 800–809. http://dx.doi.org/10.1115/1.2929318.
Texto completo da fonteYershov, Serhii V., e Viktor A. Yakovlev. "The Influence of Mesh Resolution on 3D RANS Flow Simulations in Turbomachinery Flow Parts". Journal of Mechanical Engineering 24, n.º 1 (30 de março de 2021): 13–27. http://dx.doi.org/10.15407/pmach2021.01.013.
Texto completo da fonteXiao, Zhongyun, Bin Mou, Xiong Jiang e Wei Han. "Computational Aeroelastic method for rotor based on MBDYN". International Journal of Modern Physics B 34, n.º 14n16 (1 de junho de 2020): 2040077. http://dx.doi.org/10.1142/s0217979220400779.
Texto completo da fonteEkkad, S. V., A. B. Mehendale, J. C. Han e C. P. Lee. "Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection". Journal of Turbomachinery 119, n.º 3 (1 de julho de 1997): 594–600. http://dx.doi.org/10.1115/1.2841163.
Texto completo da fonteAsim, Muhammad, Shoaib Muhammad, Muhammad Amjad, Muhammad Abdullah, M. A. Mujtaba, M. A. Kalam, Mohamed Mousa e Manzoore Elahi M. Soudagar. "Design and Parametric Optimization of the High-Speed Pico Waterwheel for Rural Electrification of Pakistan". Sustainability 14, n.º 11 (6 de junho de 2022): 6930. http://dx.doi.org/10.3390/su14116930.
Texto completo da fonteVerma, Shalini, Akshoy Ranjan Paul, Anuj Jain e Firoz Alam. "Numerical investigation of stall characteristics for winglet blade of a horizontal axis wind turbine". E3S Web of Conferences 321 (2021): 03004. http://dx.doi.org/10.1051/e3sconf/202132103004.
Texto completo da fonteJauch, Clemens. "Grid Services and Stress Reduction with a Flywheel in the Rotor of a Wind Turbine". Energies 14, n.º 9 (29 de abril de 2021): 2556. http://dx.doi.org/10.3390/en14092556.
Texto completo da fonteVahdati, M., e M. Imregun. "A Non-Linear Aeroelasticity Analysis of a Fan Blade Using Unstructured Dynamic Meshes". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 210, n.º 6 (novembro de 1996): 549–64. http://dx.doi.org/10.1243/pime_proc_1996_210_230_02.
Texto completo da fonteMadsen, Helge Aagaard, Torben Juul Larsen, Georg Raimund Pirrung, Ang Li e Frederik Zahle. "Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact". Wind Energy Science 5, n.º 1 (2 de janeiro de 2020): 1–27. http://dx.doi.org/10.5194/wes-5-1-2020.
Texto completo da fonteCinnella, P., P. De Palma, G. Pascazio e M. Napolitano. "A Numerical Method for Turbomachinery Aeroelasticity". Journal of Turbomachinery 126, n.º 2 (1 de abril de 2004): 310–16. http://dx.doi.org/10.1115/1.1738122.
Texto completo da fonte