Artigos de revistas sobre o tema "BKCa channels"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "BKCa channels".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhu, Shu, Darren D. Browning, Richard E. White, David Fulton e Scott A. Barman. "Mutation of protein kinase C phosphorylation site S1076 on α-subunits affects BKCa channel activity in HEK-293 cells". American Journal of Physiology-Lung Cellular and Molecular Physiology 297, n.º 4 (outubro de 2009): L758—L766. http://dx.doi.org/10.1152/ajplung.90518.2008.
Texto completo da fonteZhao, Guiling, Zachary P. Neeb, M. Dennis Leo, Judith Pachuau, Adebowale Adebiyi, Kunfu Ouyang, Ju Chen e Jonathan H. Jaggar. "Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells". Journal of General Physiology 136, n.º 3 (16 de agosto de 2010): 283–91. http://dx.doi.org/10.1085/jgp.201010453.
Texto completo da fonteXie, Man-Jiang, Yu-Guang Ma, Fang Gao, Yun-Gang Bai, Jiu-Hua Cheng, Yao-Ming Chang, Zhi-Bin Yu e Jin Ma. "Activation of BKCa channel is associated with increased apoptosis of cerebrovascular smooth muscle cells in simulated microgravity rats". American Journal of Physiology-Cell Physiology 298, n.º 6 (junho de 2010): C1489—C1500. http://dx.doi.org/10.1152/ajpcell.00474.2009.
Texto completo da fonteLing, Shizhang, Jian-Zhong Sheng e Andrew P. Braun. "The calcium-dependent activity of large-conductance, calcium-activated K+ channels is enhanced by Pyk2- and Hck-induced tyrosine phosphorylation". American Journal of Physiology-Cell Physiology 287, n.º 3 (setembro de 2004): C698—C706. http://dx.doi.org/10.1152/ajpcell.00030.2004.
Texto completo da fonteKim, Eun Young, Jae Mi Suh, Yu-Hsin Chiu e Stuart E. Dryer. "Regulation of podocyte BKCa channels by synaptopodin, Rho, and actin microfilaments". American Journal of Physiology-Renal Physiology 299, n.º 3 (setembro de 2010): F594—F604. http://dx.doi.org/10.1152/ajprenal.00206.2010.
Texto completo da fonteWerner, Matthias E., Andrea L. Meredith, Richard W. Aldrich e Mark T. Nelson. "Hypercontractility and impaired sildenafil relaxations in the BKCa channel deletion model of erectile dysfunction". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 295, n.º 1 (julho de 2008): R181—R188. http://dx.doi.org/10.1152/ajpregu.00173.2008.
Texto completo da fonteChoi, Chang-Rok, Eun-Jin Kim, Tae Hyun Choi, Jaehee Han e Dawon Kang. "Enhancing Human Cutaneous Wound Healing through Targeted Suppression of Large Conductance Ca2+-Activated K+ Channels". International Journal of Molecular Sciences 25, n.º 2 (9 de janeiro de 2024): 803. http://dx.doi.org/10.3390/ijms25020803.
Texto completo da fonteBarman, Scott A., Shu Zhu e Richard E. White. "Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle". American Journal of Physiology-Lung Cellular and Molecular Physiology 286, n.º 1 (janeiro de 2004): L149—L155. http://dx.doi.org/10.1152/ajplung.00207.2003.
Texto completo da fonteKhan, Raheela N., Stephen K. Smith, J. J. Morrison e Michael L. J. Ashford. "Ca2+ dependence and pharmacology of large-conductance K+ channels in nonlabor and labor human uterine myocytes". American Journal of Physiology-Cell Physiology 273, n.º 5 (1 de novembro de 1997): C1721—C1731. http://dx.doi.org/10.1152/ajpcell.1997.273.5.c1721.
Texto completo da fonteHou, Shangwei, Stefan H. Heinemann e Toshinori Hoshi. "Modulation of BKCa Channel Gating by Endogenous Signaling Molecules". Physiology 24, n.º 1 (fevereiro de 2009): 26–35. http://dx.doi.org/10.1152/physiol.00032.2008.
Texto completo da fonteHannigan, K. I., R. J. Large, E. Bradley, M. A. Hollywood, G. P. Sergeant, N. G. McHale e K. D. Thornbury. "Effect of a novel BKCa opener on BKCa currents and contractility of the rabbit corpus cavernosum". American Journal of Physiology-Cell Physiology 310, n.º 4 (15 de fevereiro de 2016): C284—C292. http://dx.doi.org/10.1152/ajpcell.00273.2015.
Texto completo da fonteChang, Wei-Ting, e Sheng-Nan Wu. "Effective Activation of BKCa Channels by QO-40 (5-(Chloromethyl)-3-(Naphthalen-1-yl)-2-(Trifluoromethyl)Pyrazolo [1,5-a]pyrimidin-7(4H)-one), Known to Be an Opener of KCNQ2/Q3 Channels". Pharmaceuticals 14, n.º 5 (21 de abril de 2021): 388. http://dx.doi.org/10.3390/ph14050388.
Texto completo da fonteNiloy, Sayeman Islam, Yue Shen, Lirong Guo, Stephen T. O’Rourke e Chengwen Sun. "Loss of IP3R-BKCa Coupling Is Involved in Vascular Remodeling in Spontaneously Hypertensive Rats". International Journal of Molecular Sciences 24, n.º 13 (30 de junho de 2023): 10903. http://dx.doi.org/10.3390/ijms241310903.
Texto completo da fonteSansom, Steven C., Rong Ma, Pamela K. Carmines e David A. Hall. "Regulation of Ca2+-activated K+ channels by multifunctional Ca2+/calmodulin-dependent protein kinase". American Journal of Physiology-Renal Physiology 279, n.º 2 (1 de agosto de 2000): F283—F288. http://dx.doi.org/10.1152/ajprenal.2000.279.2.f283.
Texto completo da fonteYokoshiki, Hisashi, Takashi Seki, Masanori Sunagawa e Nicholas Sperelakis. "Inhibition of Ca2+-activated K+ channels by tyrosine phosphatase inhibitors in rat mesenteric artery". Canadian Journal of Physiology and Pharmacology 78, n.º 9 (1 de setembro de 2000): 745–50. http://dx.doi.org/10.1139/y00-042.
Texto completo da fontePaisansathan, Chanannait, Haoliang Xu, Francesco Vetri, Moises Hernandez e Dale A. Pelligrino. "Interactions between adenosine and K+ channel-related pathways in the coupling of somatosensory activation and pial arteriolar dilation". American Journal of Physiology-Heart and Circulatory Physiology 299, n.º 6 (dezembro de 2010): H2009—H2017. http://dx.doi.org/10.1152/ajpheart.00702.2010.
Texto completo da fonteLu, Te-Ling, Zi-Han Gao, Shih-Wei Li e Sheng-Nan Wu. "High Efficacy by GAL-021: A Known Intravenous Peripheral Chemoreceptor Modulator that Suppresses BKCa-Channel Activity and Inhibits IK(M) or Ih". Biomolecules 10, n.º 2 (25 de janeiro de 2020): 188. http://dx.doi.org/10.3390/biom10020188.
Texto completo da fonteRiddle, Melissa A., Jennifer M. Hughes e Benjimen R. Walker. "Role of caveolin-1 in endothelial BKCa channel regulation of vasoreactivity". American Journal of Physiology-Cell Physiology 301, n.º 6 (dezembro de 2011): C1404—C1414. http://dx.doi.org/10.1152/ajpcell.00013.2011.
Texto completo da fonteBarman, Scott A., Shu Zhu e Richard E. White. "PKC activates BKCa channels in rat pulmonary arterial smooth muscle via cGMP-dependent protein kinase". American Journal of Physiology-Lung Cellular and Molecular Physiology 286, n.º 6 (junho de 2004): L1275—L1281. http://dx.doi.org/10.1152/ajplung.00259.2003.
Texto completo da fonteSzteyn, Kalina, e Harpreet Singh. "BKCa Channels as Targets for Cardioprotection". Antioxidants 9, n.º 8 (17 de agosto de 2020): 760. http://dx.doi.org/10.3390/antiox9080760.
Texto completo da fonteMizutani, Hiroya, Hisao Yamamura, Makoto Muramatsu, Yumiko Hagihara, Yoshiaki Suzuki e Yuji Imaizumi. "Modulation of Ca2+ oscillation and melatonin secretion by BKCa channel activity in rat pinealocytes". American Journal of Physiology-Cell Physiology 310, n.º 9 (1 de maio de 2016): C740—C747. http://dx.doi.org/10.1152/ajpcell.00342.2015.
Texto completo da fonteGururaja Rao, Shubha, Piotr Bednarczyk, Atif Towheed, Kajol Shah, Priyanka Karekar, Devasena Ponnalagu, Haley N. Jensen et al. "BKCa (Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila melanogaster". Cells 8, n.º 9 (21 de agosto de 2019): 945. http://dx.doi.org/10.3390/cells8090945.
Texto completo da fonteLi, N., R. Shi, Y. Ye, Y. Zhang, Y. Zhang, Z. Wang, Y. Gu, Y. Yin, D. Chen e J. Tang. "Aging-induced down-regulation of Pka/Bkca pathway in rat cerebral arteries". Physiological Research 71, n.º 6 (25 de novembro de 2022): 811–23. http://dx.doi.org/10.33549/physiolres.934944.
Texto completo da fonteIdres, Sarah, Germain Perrin, Valérie Domergue, Florence Lefebvre, Susana Gomez, Audrey Varin, Rodolphe Fischmeister, Véronique Leblais e Boris Manoury. "Contribution of BKCa channels to vascular tone regulation by PDE3 and PDE4 is lost in heart failure". Cardiovascular Research 115, n.º 1 (23 de junho de 2018): 130–44. http://dx.doi.org/10.1093/cvr/cvy161.
Texto completo da fonteHerrera, Gerald M., Thomas J. Heppner e Mark T. Nelson. "Voltage dependence of the coupling of Ca2+ sparks to BKCa channels in urinary bladder smooth muscle". American Journal of Physiology-Cell Physiology 280, n.º 3 (1 de março de 2001): C481—C490. http://dx.doi.org/10.1152/ajpcell.2001.280.3.c481.
Texto completo da fonteDimitropoulou, Christiana, Guichun Han, Allison W. Miller, Mariela Molero, Leslie C. Fuchs, Richard E. White e Gerald O. Carrier. "Potassium (BKCa) currents are reduced in microvascular smooth muscle cells from insulin-resistant rats". American Journal of Physiology-Heart and Circulatory Physiology 282, n.º 3 (1 de março de 2002): H908—H917. http://dx.doi.org/10.1152/ajpheart.00382.2001.
Texto completo da fonteDarkow, D. J., L. Lu e R. E. White. "Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cGMP". American Journal of Physiology-Heart and Circulatory Physiology 272, n.º 6 (1 de junho de 1997): H2765—H2773. http://dx.doi.org/10.1152/ajpheart.1997.272.6.h2765.
Texto completo da fonteShieh, D. B., S. R. Yang, X. Y. Shi, Y. N. Wu e S. N. Wu. "Properties of BKCa Channels in Oral Keratinocytes". Journal of Dental Research 84, n.º 5 (maio de 2005): 468–73. http://dx.doi.org/10.1177/154405910508400513.
Texto completo da fonteChen, Yin-Chia, Chia-Lung Shih, Chao-Liang Wu, Yi-Hsien Fang, Edmund Cheung So e Sheng-Nan Wu. "Exploring the Impact of BKCa Channel Function in Cellular Membranes on Cardiac Electrical Activity". International Journal of Molecular Sciences 25, n.º 3 (26 de janeiro de 2024): 1537. http://dx.doi.org/10.3390/ijms25031537.
Texto completo da fonteGuntur, Divya, Horst Olschewski, Péter Enyedi, Réka Csáki, Andrea Olschewski e Chandran Nagaraj. "Revisiting the Large-Conductance Calcium-Activated Potassium (BKCa) Channels in the Pulmonary Circulation". Biomolecules 11, n.º 11 (3 de novembro de 2021): 1629. http://dx.doi.org/10.3390/biom11111629.
Texto completo da fonteLi, Yan, Jin Bai, Yi-hua Yang, Naoto Hoshi e Dong-bao Chen. "Hydrogen Sulfide Relaxes Human Uterine Artery via Activating Smooth Muscle BKCa Channels". Antioxidants 9, n.º 11 (13 de novembro de 2020): 1127. http://dx.doi.org/10.3390/antiox9111127.
Texto completo da fonteWang, Wei, Haixia Huang, Dongyan Hou, Ping Liu, Hua Wei, Xiaosuo Fu e Weizhen Niu. "Mechanosensitivity of STREX-lacking BKCa channels in the colonic smooth muscle of the mouse". American Journal of Physiology-Gastrointestinal and Liver Physiology 299, n.º 6 (dezembro de 2010): G1231—G1240. http://dx.doi.org/10.1152/ajpgi.00268.2010.
Texto completo da fonteBao, Lin, e Daniel H. Cox. "Gating and Ionic Currents Reveal How the BKCa Channel's Ca2+ Sensitivity Is Enhanced by its β1 Subunit". Journal of General Physiology 126, n.º 4 (26 de setembro de 2005): 393–412. http://dx.doi.org/10.1085/jgp.200509346.
Texto completo da fonteBraun, Andrew P. "Ammonium ion enhances the calcium-dependent gating of a mammalian large conductance, calcium-sensitive K+ channel". Canadian Journal of Physiology and Pharmacology 79, n.º 11 (1 de novembro de 2001): 919–23. http://dx.doi.org/10.1139/y01-076.
Texto completo da fonteLynch, Fiona M., Sarah B. Withers, Zhihong Yao, Matthias E. Werner, Gill Edwards, Arthur H. Weston e Anthony M. Heagerty. "Perivascular adipose tissue-derived adiponectin activates BKCa channels to induce anticontractile responses". American Journal of Physiology-Heart and Circulatory Physiology 304, n.º 6 (15 de março de 2013): H786—H795. http://dx.doi.org/10.1152/ajpheart.00697.2012.
Texto completo da fonteHannah, Rachael M., Kathryn M. Dunn, Adrian D. Bonev e Mark T. Nelson. "Endothelial SKCa and IKCa Channels Regulate Brain Parenchymal Arteriolar Diameter and Cortical Cerebral Blood Flow". Journal of Cerebral Blood Flow & Metabolism 31, n.º 5 (22 de dezembro de 2010): 1175–86. http://dx.doi.org/10.1038/jcbfm.2010.214.
Texto completo da fonteFallet, Rachel W., Joseph P. Bast, Keiji Fujiwara, Naohito Ishii, Steven C. Sansom e Pamela K. Carmines. "Influence of Ca2+-activated K+ channels on rat renal arteriolar responses to depolarizing agonists". American Journal of Physiology-Renal Physiology 280, n.º 4 (1 de abril de 2001): F583—F591. http://dx.doi.org/10.1152/ajprenal.2001.280.4.f583.
Texto completo da fonteQian, Lingling, Xiaoyu Liu e Ruxing Wang. "Role of BKCa channels in diabetic vascular complications". Chinese Medical Journal 127, n.º 9 (5 de maio de 2014): 1775–81. http://dx.doi.org/10.3760/cma.j.issn.0366-6999.20132503.
Texto completo da fonteCampbell, William B., Blythe B. Holmes, John R. Falck, Jorge H. Capdevila e Kathryn M. Gauthier. "Regulation of potassium channels in coronary smooth muscle by adenoviral expression of cytochrome P-450 epoxygenase". American Journal of Physiology-Heart and Circulatory Physiology 290, n.º 1 (janeiro de 2006): H64—H71. http://dx.doi.org/10.1152/ajpheart.00516.2005.
Texto completo da fonteSweet, Tara-Beth, e Daniel H. Cox. "Measuring the Influence of the BKCa β1 Subunit on Ca2+ Binding to the BKCa Channel". Journal of General Physiology 133, n.º 2 (12 de janeiro de 2009): 139–50. http://dx.doi.org/10.1085/jgp.200810129.
Texto completo da fonteKang, Lori S., SeJeong Kim, James M. Dominguez, Amy L. Sindler, Gregory M. Dick e Judy M. Muller-Delp. "Aging and muscle fiber type alter K+ channel contributions to the myogenic response in skeletal muscle arterioles". Journal of Applied Physiology 107, n.º 2 (agosto de 2009): 389–98. http://dx.doi.org/10.1152/japplphysiol.91245.2008.
Texto completo da fonteCordeiro, Brenda, Dmitry Terentyev e Richard T. Clements. "BKCa channel activation increases cardiac contractile recovery following hypothermic ischemia/reperfusion". American Journal of Physiology-Heart and Circulatory Physiology 309, n.º 4 (15 de agosto de 2015): H625—H633. http://dx.doi.org/10.1152/ajpheart.00818.2014.
Texto completo da fonteBorbouse, Léna, Gregory M. Dick, Shinichi Asano, Shawn B. Bender, U. Deniz Dincer, Gregory A. Payne, Zachary P. Neeb, Ian N. Bratz, Michael Sturek e Johnathan D. Tune. "Impaired function of coronary BKCa channels in metabolic syndrome". American Journal of Physiology-Heart and Circulatory Physiology 297, n.º 5 (novembro de 2009): H1629—H1637. http://dx.doi.org/10.1152/ajpheart.00466.2009.
Texto completo da fonteRosenfeld, Charles R., David N. Cornfield e Timothy Roy. "Ca2+-activated K+ channels modulate basal and E2β-induced rises in uterine blood flow in ovine pregnancy". American Journal of Physiology-Heart and Circulatory Physiology 281, n.º 1 (1 de julho de 2001): H422—H431. http://dx.doi.org/10.1152/ajpheart.2001.281.1.h422.
Texto completo da fonteSavalli, Nicoletta, Andrei Kondratiev, Sarah Buxton de Quintana, Ligia Toro e Riccardo Olcese. "Modes of Operation of the BKCa Channel β2 Subunit". Journal of General Physiology 130, n.º 1 (25 de junho de 2007): 117–31. http://dx.doi.org/10.1085/jgp.200709803.
Texto completo da fonteZhao, T., H. Zhang, C. Jin, F. Qiu, Y. Wu e L. Shi. "Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels". Journal of Molecular Endocrinology 59, n.º 3 (outubro de 2017): 219–33. http://dx.doi.org/10.1530/jme-17-0028.
Texto completo da fonteBai, Bing, Nanjuan Lu, Wei Zhang, Jinghan Lin, Tingting Zhao, Shanshan Zhou, Elona Khasanova e Liming Zhang. "Inhibitory Effects of Genistein on Vascular Smooth Muscle Cell Proliferation Induced by Ox-LDL: Role of BKCa Channels". Analytical Cellular Pathology 2020 (13 de dezembro de 2020): 1–12. http://dx.doi.org/10.1155/2020/8895449.
Texto completo da fonteStorer, RJ, DC Immke, R. Yin e PJ Goadsby. "Large Conductance Calcium-Activated Potassium Channels (BKCa) Modulate Trigeminovascular Nociceptive Transmission". Cephalalgia 29, n.º 12 (dezembro de 2009): 1242–58. http://dx.doi.org/10.1111/j.1468-2982.2009.01849.x.
Texto completo da fonteKim, Eun Young, Shengwei Zou, Lon D. Ridgway e Stuart E. Dryer. "β1-Subunits Increase Surface Expression of a Large-Conductance Ca2+-Activated K+ Channel Isoform". Journal of Neurophysiology 97, n.º 5 (maio de 2007): 3508–16. http://dx.doi.org/10.1152/jn.00009.2007.
Texto completo da fonteZhang, Q., Y. Bai, Z. Yang, J. Tian e Z. Meng. "The molecular mechanism of the effect of sulfur dioxide inhalation on the potassium and calcium ion channels in rat aortas". Human & Experimental Toxicology 35, n.º 4 (24 de junho de 2015): 418–27. http://dx.doi.org/10.1177/0960327115591375.
Texto completo da fonte