Artigos de revistas sobre o tema "Biopolymer"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Biopolymer".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Arrieta, Alvaro Angel, Jorge Alberto Ducuara e Enrique Miguel Combatt. "Valorization of cashew nut processing by-product: development of a cardol/starch biopolymer composite with electrochemical properties and technological potential". Eastern-European Journal of Enterprise Technologies 3, n.º 6 (123) (30 de junho de 2023): 32–41. http://dx.doi.org/10.15587/1729-4061.2023.282208.
Texto completo da fonteAslam Khan, Muhammad Umar, Saiful Izwan Abd Razak, Wafa Shamsan Al Arjan, Samina Nazir, T. Joseph Sahaya Anand, Hassan Mehboob e Rashid Amin. "Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review". Molecules 26, n.º 3 (25 de janeiro de 2021): 619. http://dx.doi.org/10.3390/molecules26030619.
Texto completo da fonteArrieta, Alvaro A., Yamid Nuñez de la Rosa e Manuel Palencia. "Electrochemistry Study of Bio-Based Composite Biopolymer Electrolyte—Starch/Cardol". Polymers 15, n.º 9 (23 de abril de 2023): 1994. http://dx.doi.org/10.3390/polym15091994.
Texto completo da fonteLemboye, Kehinde, e Abdullah Almajed. "Effect of Varying Curing Conditions on the Strength of Biopolymer Modified Sand". Polymers 15, n.º 7 (28 de março de 2023): 1678. http://dx.doi.org/10.3390/polym15071678.
Texto completo da fonteFatehi, Hadi, Dominic E. L. Ong, Jimmy Yu e Ilhan Chang. "Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review". Geosciences 11, n.º 7 (15 de julho de 2021): 291. http://dx.doi.org/10.3390/geosciences11070291.
Texto completo da fonteCigala, Rosalia Maria, Giovanna De Luca, Ileana Ielo e Francesco Crea. "Biopolymeric Nanocomposites for CO2 Capture". Polymers 16, n.º 8 (11 de abril de 2024): 1063. http://dx.doi.org/10.3390/polym16081063.
Texto completo da fonteda Luz, Tayla Gabriela, Valber Sales e Raquel Dalla Costa da Rocha. "Evaluation of technology potential of Aloe arborescens biopolymer in galvanic effluent treatment". Water Science and Technology 2017, n.º 1 (23 de fevereiro de 2018): 48–57. http://dx.doi.org/10.2166/wst.2018.082.
Texto completo da fonteIkumapayi, Omolayo M., Opeyeolu T. Laseinde, Adedayo S. Adebayo, Jesutoni R. Oluwafemi, Temitayo S. Ogedengbe, Stephen A. Akinlabi e Esther T. Akinlabi. "An Overview on recent trends in Biopolymer Base Composites for Tissue Regeneration". E3S Web of Conferences 391 (2023): 01085. http://dx.doi.org/10.1051/e3sconf/202339101085.
Texto completo da fonteCherednichenko, Kirill, Dmitry Kopitsyn, Svetlana Batasheva e Rawil Fakhrullin. "Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations". Polymers 13, n.º 20 (13 de outubro de 2021): 3510. http://dx.doi.org/10.3390/polym13203510.
Texto completo da fonteFrølund, B., K. Keiding e P. H. Nielsen. "A Comparative Study of Biopolymers from a Conventional and an Advanced Activated Sludge Treatment Plant". Water Science and Technology 29, n.º 7 (1 de abril de 1994): 137–41. http://dx.doi.org/10.2166/wst.1994.0326.
Texto completo da fonteAppiah, Eugene Sefa, Perseverance Dzikunu, Nashiru Mahadeen, Daniel Nframah Ampong, Kwadwo Mensah-Darkwa, Anuj Kumar, Ram K. Gupta e Mark Adom-Asamoah. "Biopolymers-Derived Materials for Supercapacitors: Recent Trends, Challenges, and Future Prospects". Molecules 27, n.º 19 (3 de outubro de 2022): 6556. http://dx.doi.org/10.3390/molecules27196556.
Texto completo da fonteShamsuri, Ahmad Adlie, Khalina Abdan e Tatsuo Kaneko. "A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids". Molecules 26, n.º 1 (4 de janeiro de 2021): 216. http://dx.doi.org/10.3390/molecules26010216.
Texto completo da fonteJakobek, Lidija. "Novi trendovi u pakiranju mesa – biopolimeri s inkorporiranim polifenolnim spojevima". Meso 22, n.º 1 (2020): 75–81. http://dx.doi.org/10.31727/m.22.1.1.
Texto completo da fonteJurić, Slaven, Marina Jurić, Anet Režek Jambrak e Marko Vinceković. "Tailoring Alginate/Chitosan Microparticles Loaded with Chemical and Biological Agents for Agricultural Application and Production of Value-Added Foods". Applied Sciences 11, n.º 9 (29 de abril de 2021): 4061. http://dx.doi.org/10.3390/app11094061.
Texto completo da fonteSoldo, Antonio, e Marta Miletic. "Durability against Wetting-Drying Cycles of Sustainable Biopolymer-Treated Soil". Polymers 14, n.º 19 (10 de outubro de 2022): 4247. http://dx.doi.org/10.3390/polym14194247.
Texto completo da fonteCoelho, Natacha, Alexandra Filipe, Bruno Medronho, Solange Magalhães, Carla Vitorino, Luís Alves, Sandra Gonçalves e Anabela Romano. "Rheological and Microstructural Features of Plant Culture Media Doped with Biopolymers: Influence on the Growth and Physiological Responses of In Vitro-Grown Shoots of Thymus lotocephalus". Polysaccharides 2, n.º 2 (17 de junho de 2021): 538–53. http://dx.doi.org/10.3390/polysaccharides2020032.
Texto completo da fonteBeleška, Kęstutis, Virgilijus Valeika, Virginija Jankauskaite e Violeta Valeikiene. "Properties of Films Prepared as Packaging Plastics from Blends of Synthetic Polymer and Biopolymer". Defect and Diffusion Forum 394 (agosto de 2019): 85–89. http://dx.doi.org/10.4028/www.scientific.net/ddf.394.85.
Texto completo da fonteRamadhan, Romal, Muslim Abdurahman e Falan Srisuriyachai. "Sensitivity Analysis Comparisson of Synthetic Polymer and Biopolymer using Reservoir Simulation". Scientific Contributions Oil and Gas 43, n.º 3 (31 de dezembro de 2020): 143–52. http://dx.doi.org/10.29017/scog.43.3.516.
Texto completo da fonteZhang, Junran, e Jiahao Liu. "A Review on Soils Treated with Biopolymers Based on Unsaturated Soil Theory". Polymers 15, n.º 22 (16 de novembro de 2023): 4431. http://dx.doi.org/10.3390/polym15224431.
Texto completo da fonteLi, Xiaoming, Rongrong Cui, Lianwen Sun, Katerina E. Aifantis, Yubo Fan, Qingling Feng, Fuzhai Cui e Fumio Watari. "3D-Printed Biopolymers for Tissue Engineering Application". International Journal of Polymer Science 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/829145.
Texto completo da fontePatel, Nidhiben, e Dagnija Blumberga. "Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria". Environmental and Climate Technologies 27, n.º 1 (1 de janeiro de 2023): 323–38. http://dx.doi.org/10.2478/rtuect-2023-0025.
Texto completo da fonteBonartzev, A. P., G. A. Bonartzeva, K. V. Shaitan e M. P. Kirpichnikov. "Poly(3-hydroxybutyrate) and biopolymer systems on the basis of this polyester". Biomeditsinskaya Khimiya 57, n.º 4 (2011): 374–91. http://dx.doi.org/10.18097/pbmc20115704374.
Texto completo da fonteBerton, Paula, e Julia L. Shamshina. "Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems". Pharmaceuticals 16, n.º 2 (11 de fevereiro de 2023): 272. http://dx.doi.org/10.3390/ph16020272.
Texto completo da fonteSATHYANARAYANAN, P., e G. RAINA. "COATING THICKNESS STUDY OF BIOPOLYMER-MAGNETITE CORE–SHELL NANOPARTICLES". International Journal of Nanoscience 08, n.º 04n05 (agosto de 2009): 359–66. http://dx.doi.org/10.1142/s0219581x09006274.
Texto completo da fontePreiss, Laura C., Katharina Landfester e Rafael Muñoz-Espí. "Biopolymer colloids for controlling and templating inorganic synthesis". Beilstein Journal of Nanotechnology 5 (17 de novembro de 2014): 2129–38. http://dx.doi.org/10.3762/bjnano.5.222.
Texto completo da fonteNazrun, Touha, Md Kamrul Hassan, Md Delwar Hossain, Bulbul Ahmed, Md Rayhan Hasnat e Swapan Saha. "Application of Biopolymers as Sustainable Cladding Materials: A Review". Sustainability 16, n.º 1 (19 de dezembro de 2023): 27. http://dx.doi.org/10.3390/su16010027.
Texto completo da fonteXia, Shunxiang, Laibao Zhang, Artur Davletshin, Zhuoran Li, Jiahui You e Siyuan Tan. "Application of Polysaccharide Biopolymer in Petroleum Recovery". Polymers 12, n.º 9 (19 de agosto de 2020): 1860. http://dx.doi.org/10.3390/polym12091860.
Texto completo da fonteTan, Wei, e Tejal A. Desai. "Microfluidic Patterning of Cellular Biopolymer Matrices". JALA: Journal of the Association for Laboratory Automation 8, n.º 3 (junho de 2003): 40–43. http://dx.doi.org/10.1016/s1535-5535-04-00269-2.
Texto completo da fonteKumar, Nitin, Preetinder Kaur e Surekha Bhatia. "Advances in bio-nanocomposite materials for food packaging: a review". Nutrition & Food Science 47, n.º 4 (10 de julho de 2017): 591–606. http://dx.doi.org/10.1108/nfs-11-2016-0176.
Texto completo da fonteChen, Huanwen, David Touboul, Matthias Conradin Jecklin, Jian Zheng, Mingbiao Luo e Renato Zenobi. "Manipulation of Charge States of Biopolymer Ions by Atmospheric Pressure Ion/Molecule Reactions Implemented in an Extractive Electrospray Ionization Source". European Journal of Mass Spectrometry 13, n.º 4 (agosto de 2007): 273–79. http://dx.doi.org/10.1255/ejms.879.
Texto completo da fonteJo, Yun Kee. "Natural biopolymer-based hydrogels as designer matrices for organoid cultures". Organoid 3 (25 de setembro de 2023): e13. http://dx.doi.org/10.51335/organoid.2023.3.e13.
Texto completo da fonteYahya, Esam Bashir, A. A. Amirul, Abdul Khalil H.P.S., Niyi Gideon Olaiya, Muhammad Omer Iqbal, Fauziah Jummaat, Atty Sofea A.K. e A. S. Adnan. "Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine". Polymers 13, n.º 10 (17 de maio de 2021): 1612. http://dx.doi.org/10.3390/polym13101612.
Texto completo da fonteChen, I.-Hao, Tzer-Min Lee e Chih-Ling Huang. "Biopolymers Hybrid Particles Used in Dentistry". Gels 7, n.º 1 (22 de março de 2021): 31. http://dx.doi.org/10.3390/gels7010031.
Texto completo da fonteMorales-Jiménez, Mónica, Luisa Gouveia, Jorge Yáñez-Fernández, Roberto Castro-Muñoz e Blanca Estela Barragán-Huerta. "Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film". Coatings 10, n.º 2 (31 de janeiro de 2020): 120. http://dx.doi.org/10.3390/coatings10020120.
Texto completo da fonteShamshina, Julia L., e Paula Berton. "Ionic Liquids as Designed, Multi-Functional Plasticizers for Biodegradable Polymeric Materials: A Mini-Review". International Journal of Molecular Sciences 25, n.º 3 (31 de janeiro de 2024): 1720. http://dx.doi.org/10.3390/ijms25031720.
Texto completo da fonteKwon, Tae-Hyuk, e Jonathan B. Ajo-Franklin. "High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media". GEOPHYSICS 78, n.º 6 (1 de novembro de 2013): EN117—EN127. http://dx.doi.org/10.1190/geo2012-0392.1.
Texto completo da fonteIlić-Stojanović, Snežana, Ljubiša Nikolić e Suzana Cakić. "A Review of Patents and Innovative Biopolymer-Based Hydrogels". Gels 9, n.º 7 (7 de julho de 2023): 556. http://dx.doi.org/10.3390/gels9070556.
Texto completo da fonteUnger, Scott R., Troy A. Hottle, Shakira R. Hobbs, Cassandra L. Thiel, Nicole Campion, Melissa M. Bilec e Amy E. Landis. "Do single-use medical devices containing biopolymers reduce the environmental impacts of surgical procedures compared with their plastic equivalents?" Journal of Health Services Research & Policy 22, n.º 4 (22 de maio de 2017): 218–25. http://dx.doi.org/10.1177/1355819617705683.
Texto completo da fonteLee, Minhyeong, Jooyoung Im, Gye-Chun Cho, Hee Hwan Ryu e Ilhan Chang. "Interfacial Shearing Behavior along Xanthan Gum Biopolymer-Treated Sand and Solid Interfaces and Its Meaning in Geotechnical Engineering Aspects". Applied Sciences 11, n.º 1 (25 de dezembro de 2020): 139. http://dx.doi.org/10.3390/app11010139.
Texto completo da fonteFatehi, Hadi, Dominic E. L. Ong, Jimmy Yu e Ilhan Chang. "The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil". Polymers 15, n.º 6 (21 de março de 2023): 1549. http://dx.doi.org/10.3390/polym15061549.
Texto completo da fonteSurya, Indra, C. M. Hazwan, H. P. S. Abdul Khalil, Esam Bashir Yahya, A. B. Suriani, Mohammed Danish e Azmi Mohamed. "Hydrophobicity and Biodegradability of Silane-Treated Nanocellulose in Biopolymer for High-Grade Packaging Applications". Polymers 14, n.º 19 (3 de outubro de 2022): 4147. http://dx.doi.org/10.3390/polym14194147.
Texto completo da fonteChen, Chunhui, Zesen Peng, JiaYu Gu, Yaxiong Peng, Xiaoyang Huang e Li Wu. "Exploring Environmentally Friendly Biopolymer Material Effect on Soil Tensile and Compressive Behavior". International Journal of Environmental Research and Public Health 17, n.º 23 (3 de dezembro de 2020): 9032. http://dx.doi.org/10.3390/ijerph17239032.
Texto completo da fonteIdris, Maizlinda Izwana, Mohammed Firdaus Adzhari, Siti Natrah Abdul Bakil, Tee Chuan Lee, Mohamad Ali Selimin e Hasan Zuhudi Abdullah. "Surface Properties of Alginate/Chitosan Biofilm for Wound Healing Application". Materials Science Forum 1010 (setembro de 2020): 602–7. http://dx.doi.org/10.4028/www.scientific.net/msf.1010.602.
Texto completo da fonteAhmad, Noormazlinah, Abdurahman Nour Hamid e Adil M. Osman. "A Review Study on the Potential of Microalgae Biomass Producing Biopolymer Material". Current Science and Technology 2, n.º 2 (15 de junho de 2023): 49–55. http://dx.doi.org/10.15282/cst.v2i2.9413.
Texto completo da fonteShi, Jiayuan, e Bin Shi. "Environment-Friendly Design of Lithium Batteries Starting from Biopolymer-Based Electrolyte". Nano 16, n.º 05 (7 de abril de 2021): 2130006. http://dx.doi.org/10.1142/s1793292021300061.
Texto completo da fonteChang, Ilhan, Yeong-Man Kwon, Jooyoung Im e Gye-Chun Cho. "Soil consistency and interparticle characteristics of xanthan gum biopolymer–containing soils with pore-fluid variation". Canadian Geotechnical Journal 56, n.º 8 (agosto de 2019): 1206–13. http://dx.doi.org/10.1139/cgj-2018-0254.
Texto completo da fonteKoralegedara, Indika Dilrukshi, Charith Aravinda Hettiarachchi, Batugahage Don Rohitha Prasantha e Kuruppu Mudiyanselage Swarna Wimalasiri. "Synthesis of Nano-Scale Biopolymer Particles from Legume Protein Isolates and Carrageenan". Food technology and biotechnology 58, n.º 2 (31 de julho de 2020): 214–22. http://dx.doi.org/10.17113/ftb.58.02.20.6279.
Texto completo da fonteSoldo, Antonio, Victor Aguilar e Marta Miletić. "Macroscopic Stress-Strain Response and Strain-Localization Behavior of Biopolymer-Treated Soil". Polymers 14, n.º 5 (28 de fevereiro de 2022): 997. http://dx.doi.org/10.3390/polym14050997.
Texto completo da fonteYahya, Esam Bashir, Fauziah Jummaat, A. A. Amirul, A. S. Adnan, N. G. Olaiya, C. K. Abdullah, Samsul Rizal, M. K. Mohamad Haafiz e H. P. S. Abdul Khalil. "A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery". Antibiotics 9, n.º 10 (28 de setembro de 2020): 648. http://dx.doi.org/10.3390/antibiotics9100648.
Texto completo da fonteMackie, Alan. "Biopolymers 2013: Biopolymer assemblies for material design". Biopolymers 101, n.º 9 (23 de junho de 2014): 913–14. http://dx.doi.org/10.1002/bip.22511.
Texto completo da fonte