Literatura científica selecionada sobre o tema "Biophysical dynamics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Biophysical dynamics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Biophysical dynamics"
Berendsen, H. J. C. "Biophysical applications of molecular dynamics". Computer Physics Communications 44, n.º 3 (junho de 1987): 233–42. http://dx.doi.org/10.1016/0010-4655(87)90078-6.
Texto completo da fonteNelson, David R. "Biophysical Dynamics in Disorderly Environments". Annual Review of Biophysics 41, n.º 1 (9 de junho de 2012): 371–402. http://dx.doi.org/10.1146/annurev-biophys-042910-155236.
Texto completo da fonteAbarbanel, Henry D. I., Leif Gibb, R. Huerta e M. I. Rabinovich. "Biophysical model of synaptic plasticity dynamics". Biological Cybernetics 89, n.º 3 (1 de setembro de 2003): 214–26. http://dx.doi.org/10.1007/s00422-003-0422-x.
Texto completo da fonteSataric, M. V., e J. A. Tuszynski. "Nonlinear Dynamics of Microtubules: Biophysical Implications". Journal of Biological Physics 31, n.º 3-4 (dezembro de 2005): 487–500. http://dx.doi.org/10.1007/s10867-005-7288-1.
Texto completo da fonteSu, Qian Peter, e Lining Arnold Ju. "Biophysical nanotools for single-molecule dynamics". Biophysical Reviews 10, n.º 5 (18 de agosto de 2018): 1349–57. http://dx.doi.org/10.1007/s12551-018-0447-y.
Texto completo da fonteFernandez, Fernando R., Jordan D. T. Engbers e Ray W. Turner. "Firing Dynamics of Cerebellar Purkinje Cells". Journal of Neurophysiology 98, n.º 1 (julho de 2007): 278–94. http://dx.doi.org/10.1152/jn.00306.2007.
Texto completo da fonteFlomenbom, Ophir. "Single File Dynamics Advances with a Focus on Biophysical Relevance". Biophysical Reviews and Letters 09, n.º 04 (dezembro de 2014): 307–31. http://dx.doi.org/10.1142/s1793048014400013.
Texto completo da fonteSikosek, Tobias, e Hue Sun Chan. "Biophysics of protein evolution and evolutionary protein biophysics". Journal of The Royal Society Interface 11, n.º 100 (6 de novembro de 2014): 20140419. http://dx.doi.org/10.1098/rsif.2014.0419.
Texto completo da fonteTortora, Maxime MC, Hossein Salari e Daniel Jost. "Chromosome dynamics during interphase: a biophysical perspective". Current Opinion in Genetics & Development 61 (abril de 2020): 37–43. http://dx.doi.org/10.1016/j.gde.2020.03.001.
Texto completo da fonteChiu, Wah, e Keith Moffat. "Biophysical methods: structure, dynamics and gorgeous images". Current Opinion in Structural Biology 17, n.º 5 (outubro de 2007): 546–48. http://dx.doi.org/10.1016/j.sbi.2007.09.008.
Texto completo da fonteTeses / dissertações sobre o assunto "Biophysical dynamics"
Brandt, Erik G. "Interactions and dynamics in biophysical model systems /". Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10300.
Texto completo da fonteElmlund, Hans. "Protein structure dynamics and interplay : by single-particle electron microscopy". Doctoral thesis, Stockholm : Teknik och hälsa, Technology and Health, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4669.
Texto completo da fonteDale, Michael Anthony Joseph. "Global Energy Modelling : A Biophysical Approach (GEMBA)". Thesis, University of Canterbury. Mechanical Engineering, 2010. http://hdl.handle.net/10092/5156.
Texto completo da fontePearson, Joshua Thomas. "A biophysical study of protein dynamics and protein-ligand interactions /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8173.
Texto completo da fonteStollar, Elliott Jonathan. "Biophysical and crystallographic investigation of homeodomain stability, dynamics, and recognition". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615778.
Texto completo da fonteZerlaut, Yann. "Biophysical and circuit properties underlying population dynamics in neocortical networks". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066095/document.
Texto completo da fonteThe neocortex of awake animals displays an activated state in whichcortical activity manifests highly complex, seemingly noisybehavior. At the level of single neurons the activity is characterizedby strong subthreshold fluctuations and irregular firing at lowrate. At the network level, the activity is weakly synchronized andexhibits a chaotic dynamics. Yet, it is within this regime thatinformation is processed reliably through neural networks. This regimeis thus crucial to neural computation. In this thesis, we contributeto its understanding by investigating how the biophysical propertiesat the cellular level combined with the properties of the networkarchitecture shapes this asynchronous dynamics.This thesis builds up on the so-called mean-field models of networkdynamics, a theoretical formalism that describes population dynamicsvia a self-consistency approach. At the core of this formalism lie theneuronal transfer function: the input-output description of individualneurons. The first part of this thesis focuses on derivingbiologically-realistic neuronal transfer functions. We firstformulate a two step procedure to incorporate biological details (suchas an extended dendritic structure and the effect of various ionicchannels) into this transfer function based on experimentalcharacterizations.First, we investigated in vitro how layer V pyramidal neocorticalneurons respond to membrane potential fluctuations on a cell-by-cellbasis. We found that, not only individual neurons strongly differ interms of their excitability, but also, and unexpectedly, in theirsensitivities to fluctuations. In addition, using theoreticalmodeling, we attempted to reproduce these results. The model predictsthat heterogeneous levels of biophysical properties such as sodiuminactivation, sharpness of sodium activation and spike frequencyadaptation account for the observed diversity of firing rateresponses.Then, we studied theoretically how dendritic integration in branchedstructures shape the membrane potential fluctuations at the soma. Wefound that, depending on the type of presynaptic activity, variouscomodulations of the membrane potential fluctuations could beachieved. We showed that, when combining this observation with theheterogeneous firing responses found experimentally, individual neuronsdifferentially responded to the different types of presynapticactivities. We thus propose that, because this mechanism offers a wayto produce specific activation as a function of the input properties,biophysical heterogeneity might contribute to the encoding of the stimulusproperties during sensory processing in neural networks.The second part of this thesis investigates how circuit properties,such as recurrent connectivity and lateral connectivity, combine withbiophysical properties to impact sensory responses through effectsmediated by population dynamics.We first investigated what was the effect of a high level of ongoingdynamics (the Up-state compared to the Down-state) on the scaling ofpost-synaptic responses. We found that the competition between therecruitment within the active recurrent network (in favor of highresponses in the Up-state) and the increased conductance level due tobackground activity (in favor of reduced responses in the Up-state)predicted a non trivial stimulus-response relationship as a functionof the intensity of the stimulation. This prediction was shown toaccurately capture measurements of post-synaptic membrane potentialresponses in response to cortical, thalamic or auditory stimulation inrat auditory cortex in vivo.Finally, by taking advantage of the mean-field approach, weconstructed a tractable large-scale model of the layer II-III networkincluding the horizontal fiber network. We investigate thespatio-temporal properties of this large-scale model and we compareits predictions with voltage sensitive dye imaging in awake fixatingmonkey
Doerdelmann, Thomas. "Structural and Biophysical Studies of the Pitx2 Homeodomain". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307443112.
Texto completo da fontePathmasiri, Wimal. "Structural and Biophysical Studies of Nucleic Acids". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8245.
Texto completo da fonteReyns, Nathalie Brigitte. "Biophysical dispersal dynamics of the blue crab in Pamlico Sound, North Carolina". NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-10312004-143755/.
Texto completo da fonteChimatiro, Sloans Kalumba. "The biophysical dynamics of the Lower Shire River Floodplain fisheries in Malawi /". Connect to this title online, 2004. http://eprints.ru.ac.za/177/.
Texto completo da fonteLivros sobre o assunto "Biophysical dynamics"
Trends in biophysics: From cell dynamics toward multicellular growth phenomena. Toronto: Apple Academic Press, 2013.
Encontre o texto completo da fonteKostyukov, Viktor. Molecular mechanics of biopolymers. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1010677.
Texto completo da fonteComputational hydrodynamics of capsules and biological cells. Boca Raton: Chapman & Hall/CRC, 2010.
Encontre o texto completo da fonteBrooks, Charles L. Proteins: A theoretical perspective of dynamics, structure, and thermodynamics. New York: J. Wiley, 1988.
Encontre o texto completo da fonteMolecules, dynamics, and life: An introduction to self-organization of matter. New York: Wiley, 1986.
Encontre o texto completo da fonteGlass, Leon. Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. New York, NY: Springer New York, 1991.
Encontre o texto completo da fonteNicolis, J. Chaotic dynamics applied to biological information processing. Berlin: Akademie-Verlag, 1987.
Encontre o texto completo da fonteSansom, M. S. P., e Philip Charles Biggin. Molecular simulations and biomembranes: From biophysics to function. Cambridge: Royal Society of Chemistry, 2010.
Encontre o texto completo da fonteInoué, Shinya. Collected works of Shinya Inoué: Microscopes, living cells, and dynamic molecules. Hackensack, NJ: World Scientific, 2008.
Encontre o texto completo da fonteJ, Eyles Stephen, ed. Mass spectrometry in structural biology and biophysics: Architecture, dynamics, and interaction of biomolecules. 2a ed. Hoboken, N.J: Wiley, 2012.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Biophysical dynamics"
Kammerdiner, Alla, Nikita Boyko, Nong Ye, Jiping He e Panos Pardalos. "Integration of Signals in Complex Biophysical Systems". In Dynamics of Information Systems, 197–211. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5689-7_10.
Texto completo da fonteKosztin, Ioan, e Klaus Schulten. "Molecular Dynamics Methods for Bioelectronic Systems in Photosynthesis". In Biophysical Techniques in Photosynthesis, 445–64. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8250-4_22.
Texto completo da fonteTimofeeva, Yulia. "Intracellular Calcium Dynamics: Biophysical and Simplified Models". In Springer Series in Computational Neuroscience, 69–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00817-8_3.
Texto completo da fonteBuda, Francesco. "Density Functional Theory and Car-Parrinello Molecular Dynamics Methods". In Biophysical Techniques in Photosynthesis, 487–99. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8250-4_24.
Texto completo da fonteGallego, Alejandro. "Biophysical Models: An Evolving Tool in Marine Ecological Research". In Modelling Complex Ecological Dynamics, 279–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-05029-9_20.
Texto completo da fontePlaxco, Kevin W., e Christopher M. Dobson. "Monitoring Protein Folding Using Time-Resolved Biophysical Techniques". In Protein Dynamics, Function, and Design, 163–72. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4895-9_11.
Texto completo da fonteLeigh, Brian S., Diana E. Schlamadinger e Judy E. Kim. "Structures and Dynamics of Proteins Probed by UV Resonance Raman Spectroscopy". In Biophysical Methods for Biotherapeutics, 243–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118354698.ch9.
Texto completo da fonteCardullo, Richard A., Robert M. Mungovan e David E. Wolf. "Imaging Membrane Organization and Dynamics". In Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, 231–60. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9513-4_8.
Texto completo da fonteGierasch, Lila M. "Signal Sequences: Roles and Interactions by Biophysical Methods". In Biological Membranes: Structure, Biogenesis and Dynamics, 191–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78846-8_18.
Texto completo da fonteKonermann, Lars, Johannes Messinger e Warwick Hillier. "Mass Spectrometry-Based Methods for Studying Kinetics and Dynamics in Biological Systems". In Biophysical Techniques in Photosynthesis, 167–90. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8250-4_9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Biophysical dynamics"
Feng, Jianfeng. "A comparison between abstract and biophysical neuron models". In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302375.
Texto completo da fonteDu, Y., e A. M. Al-Jumaily. "Modified Fading Memory Model to Describe ASM Dynamics". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41179.
Texto completo da fonteMajumdar, Anindya, e Sean J. Kirkpatrick. "Optical vortices as potential indicators of biophysical dynamics". In SPIE BiOS, editado por Valery V. Tuchin, Kirill V. Larin, Martin J. Leahy e Ruikang K. Wang. SPIE, 2017. http://dx.doi.org/10.1117/12.2251026.
Texto completo da fonteYu, Theodore, Terrence J. Sejnowski e Gert Cauwenberghs. "Biophysical neural spiking and bursting dynamics in reconfigurable analog VLSI". In 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2010. http://dx.doi.org/10.1109/biocas.2010.5709602.
Texto completo da fonteAl-Jumaily, A. M., e Y. Du. "Simplified Model for ASM Dynamics". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53133.
Texto completo da fonteSpiliotis, Konstantinos G., Hari Radhakrishnan e George C. Georgiou. "Randomness switches the dynamics in a biophysical model for Parkinson Disease". In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756429.
Texto completo da fonteYu, T., e G. Cauwenberghs. "Biophysical synaptic dynamics in an analog VLSI network of hodgkin-huxley neurons". In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333272.
Texto completo da fonteShcheglova, S. N., e B. O. Shcheglov. "Development of a mathematical model for assessing the biophysical effect of radiation on human health in the North". In XXV REGIONAL SCIENTIFIC CONFERENCE STUDENTS, APPLICANTS AND YOUNG RESEARCHERS. Знание-М, 2020. http://dx.doi.org/10.38006/907345-63-8.2020.155.162.
Texto completo da fonteDimitrov, Petar. "Investigation of dynamics of some biophysical parameters of Norway spruce stands by MODIS data". In 2009 4th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2009. http://dx.doi.org/10.1109/rast.2009.5158232.
Texto completo da fonteDeb, Saswati, e Arun Chakraborty. "Simulation of plankton dynamics in the Hooghly Estuary using a high resolution biophysical model". In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6350952.
Texto completo da fonteRelatórios de organizações sobre o assunto "Biophysical dynamics"
Koch, Christof. Dynamic Biophysical Theory for the Role of Hippocampal Neural Networks in the Declarative Memory System. Fort Belvoir, VA: Defense Technical Information Center, junho de 1992. http://dx.doi.org/10.21236/ada279961.
Texto completo da fonteVerburg, Peter H., Žiga Malek, Sean P. Goodwin e Cecilia Zagaria. The Integrated Economic-Environmental Modeling (IEEM) Platform: IEEM Platform Technical Guides: User Guide for the IEEM-enhanced Land Use Land Cover Change Model Dyna-CLUE. Inter-American Development Bank, setembro de 2021. http://dx.doi.org/10.18235/0003625.
Texto completo da fonte