Literatura científica selecionada sobre o tema "Biomolecular encryption"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Biomolecular encryption".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Biomolecular encryption"
Fischer, T., M. Neebe, T. Juchem e N. A. Hampp. "Biomolecular optical data storage and data encryption". IEEE Transactions on Nanobioscience 2, n.º 1 (março de 2003): 1–5. http://dx.doi.org/10.1109/tnb.2003.810163.
Texto completo da fonteK, Menaka. "ENHANCING INFORMATION ENCRYPTION WITH BIOMOLECULAR SEQUENCES USING NDES ALGORITHM". International Journal of Advanced Research in Computer Science 8, n.º 9 (30 de setembro de 2017): 482–85. http://dx.doi.org/10.26483/ijarcs.v8i9.5006.
Texto completo da fonteBenyahia, Kadda, Abdelkader Khobzaoui e Soumia Benbakreti. "DNA sequences for robust encryption: a strategy for IoT security enhancement". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, n.º 1 (22 de abril de 2024): 1296–316. http://dx.doi.org/10.54021/seesv5n1-067.
Texto completo da fonteAbbasi, Ali Asghar, Mahdi Mazinani e Rahil Hosseini. "Evolutionary-based image encryption using biomolecules and non-coupled map lattice". Optics & Laser Technology 140 (agosto de 2021): 106974. http://dx.doi.org/10.1016/j.optlastec.2021.106974.
Texto completo da fonteAbbasi, Ali Asghar, Mahdi Mazinani e Rahil Hosseini. "Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice". Optik 219 (outubro de 2020): 164949. http://dx.doi.org/10.1016/j.ijleo.2020.164949.
Texto completo da fonteGao, Rui, Zhuang Cai, Jianbang Wang e Huajie Liu. "Condensed DNA Nanosphere for DNA Origami Cryptography". Chemistry 5, n.º 4 (8 de novembro de 2023): 2406–17. http://dx.doi.org/10.3390/chemistry5040159.
Texto completo da fonteSun, Lining. "(Digital Presentation) Tailored Rare Earth-Doped Nanomaterials Toward Information Storage and Deep Learning Decoding". ECS Meeting Abstracts MA2022-02, n.º 51 (9 de outubro de 2022): 1981. http://dx.doi.org/10.1149/ma2022-02511981mtgabs.
Texto completo da fonteZhang, Yinan, Fei Wang, Jie Chao, Mo Xie, Huajie Liu, Muchen Pan, Enzo Kopperger et al. "DNA origami cryptography for secure communication". Nature Communications 10, n.º 1 (29 de novembro de 2019). http://dx.doi.org/10.1038/s41467-019-13517-3.
Texto completo da fonteSheng, Chengju, Xiujuan Gao, Yanjun Ding e Mingming Guo. "Water‐Soluble Luminescent Polymers with Room Temperature Phosphorescence Based on the α‐Amino Acids". Macromolecular Rapid Communications, 15 de maio de 2024. http://dx.doi.org/10.1002/marc.202400201.
Texto completo da fonteLiu, Xin, Yang Xu, Dan Luo, Gang Xu, Neal Xiong e Xiu-Bo Chen. "The secure judgment of graphic similarity against malicious adversaries and its applications". Scientific Reports 13, n.º 1 (21 de março de 2023). http://dx.doi.org/10.1038/s41598-023-30741-6.
Texto completo da fonteTeses / dissertações sobre o assunto "Biomolecular encryption"
Berton, Chloé. "Sécurité des données stockées sur molécules d’ADN". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Texto completo da fonteThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations