Siga este link para ver outros tipos de publicações sobre o tema: Biomoleculaire.

Artigos de revistas sobre o tema "Biomoleculaire"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Biomoleculaire".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Tongzhou Wang, Tongzhou Wang, Liping Xie Liping Xie, Haley Huang Haley Huang, Xin Li Xin Li, Ruliang Wang Ruliang Wang, Guang Yang Guang Yang, Yanan Du Yanan Du e Guoliang Huang Guoliang Huang. "Label-free biomolecular imaging using scanning spectral interferometry". Chinese Optics Letters 11, n.º 11 (2013): 111102–5. http://dx.doi.org/10.3788/col201311.111102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sainz de Murieta, Inaki, Jesus M. Miro-Bueno e Alfonso Rodriguez-Paton. "Biomolecular Computers". Current Bioinformatics 6, n.º 2 (1 de junho de 2011): 173–84. http://dx.doi.org/10.2174/1574893611106020173.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

OZAWA, Takeaki. "Biomolecular Science". TRENDS IN THE SCIENCES 16, n.º 5 (2011): 53–57. http://dx.doi.org/10.5363/tits.16.5_53.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

DOI, Junta. "Biomolecular Visualization". Journal of the Visualization Society of Japan 10, n.º 39 (1990): 222–27. http://dx.doi.org/10.3154/jvs.10.222.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hulme, John P., Jihye Gwak e Yuji Miyahara. "Biomolecular Embossing". Journal of the American Chemical Society 128, n.º 2 (janeiro de 2006): 390–91. http://dx.doi.org/10.1021/ja055805r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Brown, Keri A., e Terence A. Brown. "Biomolecular Archaeology". Annual Review of Anthropology 42, n.º 1 (21 de outubro de 2013): 159–74. http://dx.doi.org/10.1146/annurev-anthro-092412-155455.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

HILGARTNER, STEPHEN. "Biomolecular Databases". Science Communication 17, n.º 2 (dezembro de 1995): 240–63. http://dx.doi.org/10.1177/1075547095017002009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hemaspaandra, Lane A. "Biomolecular computing". ACM SIGACT News 30, n.º 2 (junho de 1999): 22–30. http://dx.doi.org/10.1145/568547.568557.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hess, Henry, e George D. Bachand. "Biomolecular motors". Materials Today 8, n.º 12 (dezembro de 2005): 22–29. http://dx.doi.org/10.1016/s1369-7021(05)71286-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Koehler, M., e S. Diekmann. "Biomolecular nanotechnology". Reviews in Molecular Biotechnology 82, n.º 1 (novembro de 2001): 1–2. http://dx.doi.org/10.1016/s1389-0352(01)00031-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

TIRRELL, JANE G., MAURILLE J. FOURNIER, THOMAS L. MASON e DAVID A. TIRREL. "Biomolecular Materials". Chemical & Engineering News 72, n.º 51 (19 de dezembro de 1994): 40–51. http://dx.doi.org/10.1021/cen-v072n051.p040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Yamamura, Masayuki, Tom Head e Masami Hagiya. "Biomolecular computing". New Generation Computing 20, n.º 3 (setembro de 2002): 215–16. http://dx.doi.org/10.1007/bf03037356.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Mantsch, H. "Biomolecular spectroscopy". TrAC Trends in Analytical Chemistry 13, n.º 8 (setembro de 1994): 338–39. http://dx.doi.org/10.1016/0165-9936(94)87007-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Mantsch, H. H. "Biomolecular spectroscopy". TrAC Trends in Analytical Chemistry 13, n.º 6 (junho de 1994): xi—xii. http://dx.doi.org/10.1016/0165-9936(94)87053-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Mason, Stephen. "Biomolecular homochirality". Chemical Society Reviews 17 (1988): 347. http://dx.doi.org/10.1039/cs9881700347.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Mason, Stephen F. "Biomolecular handedness". Biochemical Pharmacology 37, n.º 1 (janeiro de 1988): 1–7. http://dx.doi.org/10.1016/0006-2952(88)90748-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Middelberg, Anton. "Biomolecular Engineering". Chemical Engineering Science 61, n.º 3 (fevereiro de 2006): 875. http://dx.doi.org/10.1016/j.ces.2005.08.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hoff, A. J. "Biomolecular spectroscopy". Spectrochimica Acta Part A: Molecular Spectroscopy 50, n.º 2 (fevereiro de 1994): 379–80. http://dx.doi.org/10.1016/0584-8539(94)80069-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Miró, Jesús M., e Alfonso Rodríguez-Patón. "Biomolecular Computing Devices in Synthetic Biology". International Journal of Nanotechnology and Molecular Computation 2, n.º 2 (abril de 2010): 47–64. http://dx.doi.org/10.4018/978-1-59904-996-0.ch014.

Texto completo da fonte
Resumo:
Synthetic biology and biomolecular computation are disciplines that fuse when it comes to designing and building information processing devices. In this chapter, we study several devices that are representative of this fusion. These are three gene circuits implementing logic gates, a DNA nanodevice and a biomolecular automaton. The operation of these devices is based on gene expression regulation, the so-called competitive hybridization and the workings of certain biomolecules like restriction enzymes or regulatory proteins. Synthetic biology, biomolecular computation, systems biology and standard molecular biology concepts are also defined to give a better understanding of the chapter. The aim is to acquaint readers with these biomolecular devices born of the marriage between synthetic biology and biomolecular computation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Raković, D., M. Dugić, M. B. Plavšić, G. Keković, Irena Ćosić e David Davidović. "Quantum Decoherence and Quantum-Holographic Information Processes: From Biomolecules to Biosystems". Materials Science Forum 518 (julho de 2006): 485–90. http://dx.doi.org/10.4028/www.scientific.net/msf.518.485.

Texto completo da fonte
Resumo:
Our recently proposed quantum approach to biomolecular recognition processes is hereby additionally supported by biomolecular Resonant Recognition Model and by quantum-chemical theory of biomolecular non-radiative resonant transitions. Previously developed general quantumdecoherence framework for biopolymer conformational changes in very selective ligandproteins/ target-receptors key/lock biomolecular recognition processes (with electron-conformational coupling, giving rise to dynamical modification of many-electron energy-state hypersurface of the cellular quantum-ensemble ligand-proteins/target-receptors biomolecular macroscopic quantum system, with revealed possibility to consider cellular biomolecular recognition as a Hopfield-like quantum-holographic associative neural network) is further extended from nonlocal macroscopicquantum level of biological cell to nonlocal macroscopic-quantum level of biological organism, based on long-range coherent microwave excitations (as supported by macroscopic quantum-like microwave resonance therapy of the acupuncture system) - which might be of fundamental importance in understanding of underlying macroscopic quantum (quantum-holographic Hopfieldlike) control mechanisms of embryogenesis/ontogenesis and morphogenesis, and their backward influence on the expression of genes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ishihama, Yasushi, e Tatsuya Higashi. "“Biomolecular Mass Spectrometry”". Analytical Sciences 34, n.º 9 (10 de setembro de 2018): 989. http://dx.doi.org/10.2116/analsci.ge1809.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Bollinger, Terry. "Biomolecular Quantum Computation". Terry's Archive Online 2020, n.º 10 (22 de outubro de 2020): 1007. http://dx.doi.org/10.48034/20201007.

Texto completo da fonte
Resumo:
In terms of leveraging the total power of quantum computing, the prevalent current (2020) model of designing quantum computation devices to follow the von Neuman model of abstraction is highly unlikely to be making full use of the full range of computational assistance possible at the atomic and molecular level. This is particularly the case for molecular modeling, in using computational models that more directly leverage the quantum effects of one set of molecules to estimate the behavior of some other set of molecules would remove the bottleneck of insisting that modeling first be converted to the virtual binary or digital format of quantum von Neuman machines. It is argued that even though this possibility of “fighting molecular quantum dynamics with molecular quantum dynamics” was recognized by early quantum computing founders such as Yuri Manin and Richard Feynman, the idea was quickly overlooked in favor of the more computer-compatible model that later developed into qubits and qubit processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Mulholland, Adrian J. "Introduction. Biomolecular simulation". Journal of The Royal Society Interface 5, suppl_3 (30 de setembro de 2008): 169–72. http://dx.doi.org/10.1098/rsif.2008.0385.focus.

Texto completo da fonte
Resumo:
‘Everything that living things do can be understood in terms of the jigglings and wigglings of atoms’ as Richard Feynman provocatively stated nearly 50 years ago. But how can we ‘see’ this wiggling and jiggling and understand how it drives biology? Increasingly, computer simulations of biological macromolecules are helping to meet this challenge.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Olson, Arthur J. "Visualizing Biomolecular Interactions". Clinical Chemistry 37, n.º 4 (1 de abril de 1991): 607–8. http://dx.doi.org/10.1093/clinchem/37.4.607.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Tang, Lei. "Artificial biomolecular condensates". Nature Methods 16, n.º 1 (20 de dezembro de 2018): 23. http://dx.doi.org/10.1038/s41592-018-0288-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Dunn, F. "Biomolecular ultrasound absorption". Journal of the Acoustical Society of America 81, S1 (maio de 1987): S70—S71. http://dx.doi.org/10.1121/1.2024373.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Scolozzi, C. "PKD: Biomolecular Aspects". Giornale di Tecniche Nefrologiche e Dialitiche 24, n.º 4 (outubro de 2012): 92–94. http://dx.doi.org/10.1177/039493621202400402.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bren, Kara L. "Engineered Biomolecular Catalysts". Journal of the American Chemical Society 139, n.º 41 (4 de outubro de 2017): 14331–34. http://dx.doi.org/10.1021/jacs.7b09896.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wolynes, P. G. "Computational biomolecular science". Proceedings of the National Academy of Sciences 95, n.º 11 (26 de maio de 1998): 5848. http://dx.doi.org/10.1073/pnas.95.11.5848.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Insana, Michael F., e Samuel A. Wickline. "Multimodality Biomolecular Imaging". Proceedings of the IEEE 96, n.º 3 (março de 2008): 378–81. http://dx.doi.org/10.1109/jproc.2007.913497.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Listinsky, Jay J. "Biomolecular NMR Spectroscopy". Radiology 204, n.º 1 (julho de 1997): 100. http://dx.doi.org/10.1148/radiology.204.1.100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Novotny, Milos V. "Capillary biomolecular separations". Journal of Chromatography B: Biomedical Sciences and Applications 689, n.º 1 (fevereiro de 1997): 55–70. http://dx.doi.org/10.1016/s0378-4347(96)00398-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Gabdoulline, Razif R., e Rebecca C. Wade. "Biomolecular diffusional association". Current Opinion in Structural Biology 12, n.º 2 (abril de 2002): 204–13. http://dx.doi.org/10.1016/s0959-440x(02)00311-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Knowles, Peter. "Biomolecular NMR spectroscopy". Biochemical Education 24, n.º 1 (janeiro de 1996): 67. http://dx.doi.org/10.1016/s0307-4412(96)80024-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Bencsáth, Márta, Aladár Blaskovits e János Borvendég. "Biomolecular cytokine therapy". Pathology & Oncology Research 9, n.º 1 (março de 2003): 24–29. http://dx.doi.org/10.1007/bf03033710.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Stockley, Peter G. "Biomolecular interaction analysis". Trends in Biotechnology 14, n.º 2 (fevereiro de 1996): 39–41. http://dx.doi.org/10.1016/0167-7799(96)80916-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Wilson, W. D. "Analyzing Biomolecular Interactions". Science 295, n.º 5562 (15 de março de 2002): 2103–5. http://dx.doi.org/10.1126/science.295.5562.2103.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Plant, Anne L., Christopher S. Chen, Jay T. Groves e Atul N. Parikh. "The Biomolecular Interface". Langmuir 19, n.º 5 (março de 2003): 1449–50. http://dx.doi.org/10.1021/la034035z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Urry, Dan W. "Elastic Biomolecular Machines". Scientific American 272, n.º 1 (janeiro de 1995): 64–69. http://dx.doi.org/10.1038/scientificamerican0195-64.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Wemmer, David. "SnapShot: Biomolecular NMR". Cell 166, n.º 6 (setembro de 2016): 1600. http://dx.doi.org/10.1016/j.cell.2016.08.061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Malmqvist, Magnus, e Russ Granzow. "Biomolecular Interaction Analysis". Methods 6, n.º 2 (junho de 1994): 95–98. http://dx.doi.org/10.1006/meth.1994.1012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Cook, Julia L. "Internet Biomolecular Resources". Analytical Biochemistry 268, n.º 2 (março de 1999): 165–72. http://dx.doi.org/10.1006/abio.1998.3088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Li, Xiaoran, Zhenni Chen, Haimin Zhang, Yan Zhuang, He Shen, Yanyan Chen, Yannan Zhao, Bing Chen, Zhifeng Xiao e Jianwu Dai. "Aligned Scaffolds with Biomolecular Gradients for Regenerative Medicine". Polymers 11, n.º 2 (15 de fevereiro de 2019): 341. http://dx.doi.org/10.3390/polym11020341.

Texto completo da fonte
Resumo:
Aligned topography and biomolecular gradients exist in various native tissues and play pivotal roles in a set of biological processes. Scaffolds that recapitulate the complex structure and microenvironment show great potential in promoting tissue regeneration and repair. We begin with a discussion on the fabrication of aligned scaffolds, followed by how biomolecular gradients can be immobilized on aligned scaffolds. In particular, we emphasize how electrospinning, freeze drying, and 3D printing technology can accomplish aligned topography and biomolecular gradients flexibly and robustly. We then highlight several applications of aligned scaffolds and biomolecular gradients in regenerative medicine including nerve, tendon/ligament, and tendon/ligament-to-bone insertion regeneration. Finally, we finish with conclusions and future perspectives on the use of aligned scaffolds with biomolecular gradients in regenerative medicine.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Dey, D., e T. Goswami. "Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication". Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/348218.

Texto completo da fonte
Resumo:
The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Winter, Roland. "Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation". Annual Review of Biophysics 48, n.º 1 (6 de maio de 2019): 441–63. http://dx.doi.org/10.1146/annurev-biophys-052118-115601.

Texto completo da fonte
Resumo:
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Montagner, Suelen, e Adilson Costa. "Bases biomoleculares do fotoenvelhecimento". Anais Brasileiros de Dermatologia 84, n.º 3 (julho de 2009): 263–69. http://dx.doi.org/10.1590/s0365-05962009000300008.

Texto completo da fonte
Resumo:
Com o aumento da expectativa de vida, o estudo do processo de envelhecimento orgânico tem sido estimulado. O envelhecimento da pele, órgão que espelha os sinais do tempo, é processo de deterioração progressiva, tempo-dependente, e pode ser intensificado pela exposição solar, então designado fotoenvelhecimento. O dano das radiações sobre diversas estruturas celulares e cutâneas leva a alterações morfológicas nesses componentes, fruto de modificações biomoleculares. Muitas pesquisas são desenvolvidas com o intuito de combater ou minimizar os efeitos do fotoenvelhecimento, porém a principal estratégia nesse sentido continua sendo a prevenção, só conseguida pelo progressivo desvendar dos mecanismos fisiopatogênicos envolvidos nesse processo.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Liang, Peigang, Jiaqi Zhang e Bo Wang. "Emerging Roles of Ubiquitination in Biomolecular Condensates". Cells 12, n.º 18 (21 de setembro de 2023): 2329. http://dx.doi.org/10.3390/cells12182329.

Texto completo da fonte
Resumo:
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Mogaki, Rina, P. K. Hashim, Kou Okuro e Takuzo Aida. "Guanidinium-based “molecular glues” for modulation of biomolecular functions". Chem. Soc. Rev. 46, n.º 21 (2017): 6480–91. http://dx.doi.org/10.1039/c7cs00647k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Keković, G., D. Raković e David Davidović. "Relevance of Polaron/Soliton-Like Transport Mechanisms in Cascade Resonant Isomeric Transitions of Q1D-Molecular Chains". Materials Science Forum 555 (setembro de 2007): 119–24. http://dx.doi.org/10.4028/www.scientific.net/msf.555.119.

Texto completo da fonte
Resumo:
Our recently proposed quantum approach to biomolecular isomeric-conformational changes and recognition processes, additionally supported by biomolecular resonant recognition model and by quantum-chemical theory of biomolecular non-radiative resonant transitions, is hereby extended to cascade resonant transitions via close intermediate participating isomeric states - which might be related to polaron/soliton-like energy and charge transport mechanisms in Q1Dmolecular chains, whose relevance is explored in this paper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Gawthrop, Peter J., e Edmund J. Crampin. "Energy-based analysis of biomolecular pathways". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, n.º 2202 (junho de 2017): 20160825. http://dx.doi.org/10.1098/rspa.2016.0825.

Texto completo da fonte
Resumo:
Decomposition of biomolecular reaction networks into pathways is a powerful approach to the analysis of metabolic and signalling networks. Current approaches based on analysis of the stoichiometric matrix reveal information about steady-state mass flows (reaction rates) through the network. In this work, we show how pathway analysis of biomolecular networks can be extended using an energy-based approach to provide information about energy flows through the network. This energy-based approach is developed using the engineering-inspired bond graph methodology to represent biomolecular reaction networks. The approach is introduced using glycolysis as an exemplar; and is then applied to analyse the efficiency of free energy transduction in a biomolecular cycle model of a transporter protein [sodium-glucose transport protein 1 (SGLT1)]. The overall aim of our work is to present a framework for modelling and analysis of biomolecular reactions and processes which considers energy flows and losses as well as mass transport.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia