Siga este link para ver outros tipos de publicações sobre o tema: Biomedical materials.

Artigos de revistas sobre o tema "Biomedical materials"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Biomedical materials".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Barenberg, S. A., e E. P. Mueller. "Biomedical Materials". MRS Bulletin 16, n.º 9 (setembro de 1991): 22–25. http://dx.doi.org/10.1557/s0883769400056001.

Texto completo da fonte
Resumo:
Biomedical materials is an embryonic interdisciplinary science whose practitioners are scientists, engineers, biochemists, and clinicians who use synthetic polymers, metals, ceramics, inorganic, and natural polymers to fabricate artificial organs, medical devices, drug delivery systems, prosthetics, and packaging systems.The intent of this special issue of the MRS Bulletin is to provide readers with insight into current biomaterials research and product development. This issue is not meant to be either conclusive or definitive, but rather a “sound bite” of the field.For further information, please feel free to contact either the individual authors or the editors of this issue.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mikos, Antonios G. "Multiphase biomedical materials". Journal of Controlled Release 16, n.º 3 (agosto de 1991): 366–67. http://dx.doi.org/10.1016/0168-3659(91)90016-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mikos, Antonios G. "Multiphase biomedical materials". Journal of Controlled Release 17, n.º 2 (outubro de 1991): 207. http://dx.doi.org/10.1016/0168-3659(91)90060-q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Helmus, Michael N. "Overview of Biomedical Materials". MRS Bulletin 16, n.º 9 (setembro de 1991): 33–38. http://dx.doi.org/10.1557/s0883769400056025.

Texto completo da fonte
Resumo:
Biomedical materials are synthetic polymers, metals, ceramics, inorganics, and natural macromolecules (biopolymers), that are manufactured or processed to be suitable for use in or as medical devices or prostheses. These materials typically come in contact with cells, proteins, tissues, organs, and organ systems. They can be implanted for long-term use, e.g., an arrtificial hip, or for temporary use, e.g., an intravenous catheter. Except in isolated cases when a material is used by itself, such as collagen injections for filling soft tissue defects, biomedical materials are used as a component in a medical device. The form of the material (perhaps a textile) how it interfaces (blood contacting, for instance), and its time of use will determine its required properties. A material's use needs to be viewed in the context of the total device and its interface with the body. One material property alone is unlikely to lead to a successful and durable device, but the failure to address a key property can lead to device failure. Until recently, medical-grade polymers, ceramics, inorganics, and metals were purified versions of commercial-grade materials. A variety of polymers, biopolymers, and inorganics is now being specifically developed for medical applications. Table I summarizes the types of biomedical materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mohammed, Mohsin T., Zahid A. Khan e Arshad N. Siddiquee. "Corrosion in Biomedical Grade Titanium Based Materials: A Review". Indian Journal of Applied Research 3, n.º 9 (1 de outubro de 2011): 206–10. http://dx.doi.org/10.15373/2249555x/sept2013/65.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

TANAKA, Mototsugu. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 8 (15 de agosto de 2019): 656–61. http://dx.doi.org/10.2472/jsms.68.656.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

MIZUTANI, Masayoshi, Yuichi OTSUKA e Shoichi KIKUCHI. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 9 (15 de setembro de 2019): 723–29. http://dx.doi.org/10.2472/jsms.68.723.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

HISAMORI, Noriyuki, Takuya ISHIMOTO e Takayoshi NAKANO. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 10 (15 de outubro de 2019): 798–803. http://dx.doi.org/10.2472/jsms.68.798.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

OYA, Kei, Shogo MIYATA e Yusuke MORITA. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 11 (15 de novembro de 2019): 865–70. http://dx.doi.org/10.2472/jsms.68.865.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

IKADA, YOSHITO. "Fibers as Biomedical Materials". Sen'i Gakkaishi 47, n.º 3 (1991): P120—P125. http://dx.doi.org/10.2115/fiber.47.p120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Ning, Chengyun, Lei Zhou e Guoxin Tan. "Fourth-generation biomedical materials". Materials Today 19, n.º 1 (janeiro de 2016): 2–3. http://dx.doi.org/10.1016/j.mattod.2015.11.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Vail, N. K., L. D. Swain, W. C. Fox, T. B. Aufdlemorte, G. Lee e J. W. Barlow. "Materials for biomedical applications". Materials & Design 20, n.º 2-3 (junho de 1999): 123–32. http://dx.doi.org/10.1016/s0261-3069(99)00018-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Hench, L. L. "Third-Generation Biomedical Materials". Science 295, n.º 5557 (8 de fevereiro de 2002): 1014–17. http://dx.doi.org/10.1126/science.1067404.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Lee, In-Seop, e Myron Spector. "Biomedical materials and 2013". Biomedical Materials 8, n.º 2 (25 de março de 2013): 020201. http://dx.doi.org/10.1088/1748-6041/8/2/020201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Kutay, Sezer, Teoman Tincer e Nesrin Hasirci. "Polyurethanes as biomedical materials". British Polymer Journal 23, n.º 3 (1990): 267–72. http://dx.doi.org/10.1002/pi.4980230316.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Plachá, Daniela, e Josef Jampilek. "Graphenic Materials for Biomedical Applications". Nanomaterials 9, n.º 12 (11 de dezembro de 2019): 1758. http://dx.doi.org/10.3390/nano9121758.

Texto completo da fonte
Resumo:
Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017–2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Hao, Yan Xia. "Research on Polymeric Biomedical Materials". Applied Mechanics and Materials 484-485 (janeiro de 2014): 100–104. http://dx.doi.org/10.4028/www.scientific.net/amm.484-485.100.

Texto completo da fonte
Resumo:
The article are outlined the medicinal use of polymer materials and characteristics and described its preparation method and application for controlled drug release from polymer, polymer drugs, pharmaceutical formulations and packaging polymer materials three aspects. Meanwhile elaborates a novel well dispersed MWCNTs PMAA/MWCNTs nanohybrid hydrogels. The introduction of MWCNTs significantly improved pH-responsive hydrogels and mechanical strength, and which depending on the composition ratio of MWCNTs, particle size and concentration of crosslinker. Study found that hybrid hydrogel swelling rate significantly faster than the pure PMAA hydrogel swelling behavior and this is explained. Compressive stress - strain was found, MWCNTs load transfer heterozygous for improving mechanical properties of the hydrogel network compression plays an important role. MTT cell compatibility evaluation proves that this astute hydrogel biomedical research in particular has potential application value.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ma, Jan, Tao Li, Yan Hong Chen, T. Han Lim e F. Y. C. Boey. "Piezoelectric Materials for Biomedical Applications". Key Engineering Materials 334-335 (março de 2007): 1117–20. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.1117.

Texto completo da fonte
Resumo:
A piezoelectric microactuator for minimally invasive surgery procedures was developed using the piezoelectric tube actuator. The tube was fabricated by electrophoretic deposition of a doped PZT powders on the graphite rod substrate and co-sintering. The obtained tube shows maximum strain 0.045% in 31 mode and coercive field 1.5 kV/mm under static condition. Under dynamic condition, bending and longitudinal vibration modes can be identified from impedance spectrum and simulation. Theoretical analysis indicates that the displacement of the two modes depends on the geometry, material property, driving condition and damping conditions. The developed device uses bending mode to create rotation mechanical motion, and longitudinal mode to produce ultrasonic energy to soften and break up the target into fragments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Barud, Hernane S., e Frederico B. De Sousa. "Electrospun Materials for Biomedical Applications". Pharmaceutics 14, n.º 8 (26 de julho de 2022): 1556. http://dx.doi.org/10.3390/pharmaceutics14081556.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Murphy, Andrew F. "Biomedical Materials and Medicine Development". Science Insights Materials and Chemistry 2016, n.º 2016 (16 de janeiro de 2016): 1–5. http://dx.doi.org/10.15354/simc.16.re012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Mandal, Biman B., Chitta R. Patra e Subhas C. Kundu. "Biomedical materials research in India". Biomedical Materials 17, n.º 6 (5 de setembro de 2022): 060201. http://dx.doi.org/10.1088/1748-605x/ac8902.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

HAYASHI, TOSHIO. "Elastic Materials for Biomedical Uses." NIPPON GOMU KYOKAISHI 71, n.º 5 (1998): 243–50. http://dx.doi.org/10.2324/gomu.71.243.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Shi, Donglu, e Hongchen Gu. "Nanostructured Materials for Biomedical Applications". Journal of Nanomaterials 2008 (2008): 1–2. http://dx.doi.org/10.1155/2008/529890.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Falde, Eric J., Stefan T. Yohe, Yolonda L. Colson e Mark W. Grinstaff. "Superhydrophobic materials for biomedical applications". Biomaterials 104 (outubro de 2016): 87–103. http://dx.doi.org/10.1016/j.biomaterials.2016.06.050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Adiga, Shashishekar P., Larry A. Curtiss, Jeffrey W. Elam, Michael J. Pellin, Chun-Che Shih, Chun-Ming Shih, Shing-Jong Lin et al. "Nanoporous materials for biomedical devices". JOM 60, n.º 3 (março de 2008): 26–32. http://dx.doi.org/10.1007/s11837-008-0028-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Anderson, James M. "The future of biomedical materials". Journal of Materials Science: Materials in Medicine 17, n.º 11 (novembro de 2006): 1025–28. http://dx.doi.org/10.1007/s10856-006-0439-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Narayan, Roger J., e Ryan K. Roeder. "Recent advances in biological materials science and biomedical materials". JOM 62, n.º 7 (julho de 2010): 38. http://dx.doi.org/10.1007/s11837-010-0106-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Covolan, Vera L., Roberta Di Ponzio, Federica Chiellini, Elizabeth Grillo Fernandes, Roberto Solaro e Emo Chiellini. "Polyurethane Based Materials for the Production of Biomedical Materials". Macromolecular Symposia 169, n.º 1 (maio de 2001): 273–82. http://dx.doi.org/10.1002/masy.200451428.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Singh, Sonia. "Keratin - based materials in Biomedical engineering". IOP Conference Series: Materials Science and Engineering 1116, n.º 1 (1 de abril de 2021): 012024. http://dx.doi.org/10.1088/1757-899x/1116/1/012024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Nedelcu, Ioan-Avram, Anton Ficai, Maria Sonmez, Denisa Ficai, Ovidiu Oprea e Ecaterina Andronescu. "Silver Based Materials for Biomedical Applications". Current Organic Chemistry 18, n.º 2 (31 de janeiro de 2014): 173–84. http://dx.doi.org/10.2174/13852728113176660141.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Nikolova, Maria P., e Murthy S. Chavali. "Metal Oxide Nanoparticles as Biomedical Materials". Biomimetics 5, n.º 2 (8 de junho de 2020): 27. http://dx.doi.org/10.3390/biomimetics5020027.

Texto completo da fonte
Resumo:
The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Li, Mu Qin, Han Song Yang, Li Jie Qu e Ming Hui Zhuang. "Study on Porous Titanium Biomedical Materials". Key Engineering Materials 368-372 (fevereiro de 2008): 1212–14. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1212.

Texto completo da fonte
Resumo:
The bioactivity of porous titanium is poor. Alkali treatment and heat treatment were used in porous titanium to induce apatite biocoatings on the surface of porous titanium and improve the bioactivity of porous titanium. The results indicate that grass-blade fibre Na2TiO3 and amorphous rutile form on alkali and heat treatment samples and (102) plane Ti disappeared. Octacalcium phosphate (OCP) and Hydroxyapatite (HA) were found on the surface of samples in simulation body fluid (SBF) for 2w. The intensity of OCP and HA increased with time of samples in vivo increased. Ti-OH formed on the surface of the gel was explained by the point of view of negative and positive ion exchange. The mechanism of formation of OCP and HA induced by Na2TiO3 and TiO2 gel was studied.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Yamashita, Kimihiro. "Biomedical, Biofunctional and Bio-inspired Materials". Journal of the Japan Society of Powder and Powder Metallurgy 52, n.º 5 (2005): 346. http://dx.doi.org/10.2497/jjspm.52.346.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Chen, Xuesi. "Flourishing research in Chinese biomedical materials". Chinese Science Bulletin 66, n.º 18 (1 de junho de 2021): 2215–16. http://dx.doi.org/10.1360/tb-2021-0362.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kokubo, Tadashi. "Novel Inorganic Materials for Biomedical Applications". Key Engineering Materials 240-242 (maio de 2003): 523–28. http://dx.doi.org/10.4028/www.scientific.net/kem.240-242.523.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Yu, Lin, e Jiandong Ding. "Injectable hydrogels as unique biomedical materials". Chemical Society Reviews 37, n.º 8 (2008): 1473. http://dx.doi.org/10.1039/b713009k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Leal‑Egaña, Aldo, e Thomas Scheibel. "Silk-based materials for biomedical applications". Biotechnology and Applied Biochemistry 55, n.º 3 (12 de março de 2010): 155–67. http://dx.doi.org/10.1042/ba20090229.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Mansurov, Z. A., J. M. Jandosov, A. R. Kerimkulova, S. Azat, A. A. Zhubanova, I. E. Digel, I. S. Savistkaya, N. S. Akimbekov e A. S. Kistaubaeva. "Nanostructured Carbon Materials for Biomedical Use". Eurasian Chemico-Technological Journal 15, n.º 3 (13 de maio de 2013): 209. http://dx.doi.org/10.18321/ectj224.

Texto completo da fonte
Resumo:
One of the priority trends of carbon nanotechnology is creation of nanocomposite systems. Such carbon nanostructured composites were produced using - raw materials based on the products of agricultural waste, such as grape stones, apricot stones, rice husk. These products have a - wide spectrum of application and can be obtained in large quantities. The Institute of Combustion Problems has carried out the work on synthesis of the nanostructured carbon sorbents for multiple applications including the field of biomedicine. The article presents the data on the synthesis and physico-chemical properties of carbonaceous sorbents using physicochemical methods of investigation: separation and purification of biomolecules; isolation of phytohormone - fusicoccin; adsorbent INGO-1 in the form of an adsorption column for blood detoxification, oral (entero) sorbent - INGO-2; the study of efferent and probiotic properties and sorption activity in regard to the lipopolysaccharide (LPS), new biocomposites - based on carbonized rice husk (CRH) and cellular microorganisms; the use of CRH in wound treatment. A new material for blood detoxication (INGO-1) has been obtained. Adsorption of p-cresyl sulfate and indoxyl sulfate has shown that active carbon adsorbent can remove clinically significant level of p-cresyl sulfate and indoxyl sulfate from human plasma. Enterosorbent INGO-2 possesses high adsorption activity in relation to Gram-negative bacteria and their endotoxins. INGO-2 slows down the growth of conditionally pathogenic microorganisms, without having a negative effect on bifido and lactobacteria. The use of enterosorbent INGO-2 for sorption therapy may provide a solution to a complex problem - detoxication of the digestive tract and normalization of the intestinal micro ecology. The immobilized probiotic called "Riso-lact" was registered at the Ministry of Health of the Republic<br />of Kazakhstan as a biologically active food additive. The developed technology is patented and provides production of the medicine in the form of freeze-dried biomass immobilized in vials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Pompe, W., H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber e K. Schulte. "Functionally graded materials for biomedical applications". Materials Science and Engineering: A 362, n.º 1-2 (dezembro de 2003): 40–60. http://dx.doi.org/10.1016/s0921-5093(03)00580-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Qiu, Dong. "Testing polymeric materials for biomedical applications". Polymer Testing 73 (fevereiro de 2019): A1. http://dx.doi.org/10.1016/j.polymertesting.2018.12.028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Hammond, Paula T. "Building biomedical materials layer-by-layer". Materials Today 15, n.º 5 (maio de 2012): 196–206. http://dx.doi.org/10.1016/s1369-7021(12)70090-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Tang, Zhaohui, Chaoliang He, Huayu Tian, Jianxun Ding, Benjamin S. Hsiao, Benjamin Chu e Xuesi Chen. "Polymeric nanostructured materials for biomedical applications". Progress in Polymer Science 60 (setembro de 2016): 86–128. http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Dee, Kay C., David Puleo e Rena Bizios. "Engineering of materials for biomedical applications". Materials Today 3, n.º 1 (2000): 7–10. http://dx.doi.org/10.1016/s1369-7021(00)80003-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Yang, Yuqi, Abdullah Mohamed Asiri, Zhiwen Tang, Dan Du e Yuehe Lin. "Graphene based materials for biomedical applications". Materials Today 16, n.º 10 (outubro de 2013): 365–73. http://dx.doi.org/10.1016/j.mattod.2013.09.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Li, Yi-Chen Ethan. "Sustainable Biomass Materials for Biomedical Applications". ACS Biomaterials Science & Engineering 5, n.º 5 (22 de março de 2019): 2079–92. http://dx.doi.org/10.1021/acsbiomaterials.8b01634.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Sinha, M. K., B. R. Das, D. Bharathi, N. E. Prasad, B. Kishore, P. Raj e K. Kumar. "Electrospun Nanofibrous Materials for Biomedical Textiles". Materials Today: Proceedings 21 (2020): 1818–26. http://dx.doi.org/10.1016/j.matpr.2020.01.236.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Niinomi, Mitsuo. "Recent metallic materials for biomedical applications". Metallurgical and Materials Transactions A 33, n.º 3 (março de 2002): 477–86. http://dx.doi.org/10.1007/s11661-002-0109-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Li, Linqing, e Kristi L. Kiick. "Resilin-Based Materials for Biomedical Applications". ACS Macro Letters 2, n.º 8 (11 de julho de 2013): 635–40. http://dx.doi.org/10.1021/mz4002194.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Yu, Jicheng, Yuqi Zhang, Xiuli Hu, Grace Wright e Zhen Gu. "Hypoxia-Sensitive Materials for Biomedical Applications". Annals of Biomedical Engineering 44, n.º 6 (29 de fevereiro de 2016): 1931–45. http://dx.doi.org/10.1007/s10439-016-1578-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Kokubo, Tadashi. "Novel Biomedical Materials Based on Glasses". Materials Science Forum 293 (agosto de 1998): 65–82. http://dx.doi.org/10.4028/www.scientific.net/msf.293.65.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia