Literatura científica selecionada sobre o tema "Biomedical analysis techniques"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Biomedical analysis techniques".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Biomedical analysis techniques"
Kataoka, Hiroyuki. "SPME techniques for biomedical analysis". Bioanalysis 7, n.º 17 (setembro de 2015): 2135–44. http://dx.doi.org/10.4155/bio.15.145.
Texto completo da fonteWitte, H., e M. Wacker. "Time-frequency Techniques in Biomedical Signal Analysis". Methods of Information in Medicine 52, n.º 04 (2013): 279–96. http://dx.doi.org/10.3414/me12-01-0083.
Texto completo da fonteMalet-Martino, M., e U. Holzgrabe. "NMR techniques in biomedical and pharmaceutical analysis". Journal of Pharmaceutical and Biomedical Analysis 55, n.º 1 (abril de 2011): 1–15. http://dx.doi.org/10.1016/j.jpba.2010.12.023.
Texto completo da fonteSzultka, Malgorzata, Pawel Pomastowski, Viorica Railean-Plugaru e Boguslaw Buszewski. "Microextraction sample preparation techniques in biomedical analysis". Journal of Separation Science 37, n.º 21 (25 de setembro de 2014): 3094–105. http://dx.doi.org/10.1002/jssc.201400621.
Texto completo da fonteKataoka, Hiroyuki, e Keita Saito. "Recent advances in SPME techniques in biomedical analysis". Journal of Pharmaceutical and Biomedical Analysis 54, n.º 5 (abril de 2011): 926–50. http://dx.doi.org/10.1016/j.jpba.2010.12.010.
Texto completo da fonteTurnell, David C., e John D. H. Cooper. "Automation of liquid chromatographic techniques for biomedical analysis". Journal of Chromatography B: Biomedical Sciences and Applications 492 (agosto de 1989): 59–83. http://dx.doi.org/10.1016/s0378-4347(00)84464-3.
Texto completo da fonteCerutti, S. "On Time-frequency Techniques in Biomedical Signal Analysis". Methods of Information in Medicine 52, n.º 04 (2013): 277–78. http://dx.doi.org/10.1055/s-0038-1627060.
Texto completo da fonteAbaid Mahdi, Muhammed, e Samaher Al_Janabi. "Evaluation prediction techniques to achieve optimal biomedical analysis". International Journal of Grid and Utility Computing 1, n.º 1 (2019): 1. http://dx.doi.org/10.1504/ijguc.2019.10020511.
Texto completo da fonteScriba, Gerhard K. E. "Chiral electromigration techniques in pharmaceutical and biomedical analysis". Bioanalytical Reviews 3, n.º 2-4 (27 de setembro de 2011): 95–114. http://dx.doi.org/10.1007/s12566-011-0024-3.
Texto completo da fonteKalish, Heather, e Terry Phillips. "The Application of Micro-Analytical Techniques to Biomedical Analysis". Current Pharmaceutical Analysis 5, n.º 3 (1 de agosto de 2009): 208–28. http://dx.doi.org/10.2174/157341209788922057.
Texto completo da fonteTeses / dissertações sobre o assunto "Biomedical analysis techniques"
Esposito, Andrea. "Techniques of proteomic analysis as tools for studies in biomedical field". Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2487.
Texto completo da fonteIt is known that prenatal exposure to pollutants and particularly heavy metals can have long term damaging consequences on infants, due to their accumulation in-body. Since the 1990s, ten million tonnes of waste have been illegally dumped in the area around Caserta and Naples. Thus, direct exposure to waste and heavy metals during the last two decades was very frequent in the so-called “Lands of fires”. The number of children suffering from cancer and of malformed fetuses in Italy's "Land of Fires", an area where toxic waste has been dumped by the mafia, is reported significantly higher than elsewhere in the country. In this thesis we examined the proteome of the umbilical cords from malformed fetuses obtained by therapeutic abortions, after mothers' being exposed to the pollution on “land of fire” during early pregnancy, and analyzed the differences between umbilical cords from malformed fetuses to healthy ones. The main goals were to understand the impact of the contamination by heavy metals on the fetus development, and to identify new putative biomarkers of exposure to metal contaminants. All umbilical cords were obtained in Campania region (Naples and Caserta, mainly in the “land of fires”). The collection of the biological samples was carried out in collaboration with the Caserta Hospital “Sant’Anna e San Sebastiano” and with the Avellino Hospital “San Giuseppe Moscati”. A proteomic approach based on Filter-Aided Sample Preparation (FASP) method was set up and performed. This bio-analytical strategy combines the advantages of in-gel and in-solution digestion for mass spectrometry–based proteomics, greatly reduces the time required for sample preparation and enables more flexibility in sample processing. Protein identification and quantification were performed by matching mass spectrometry data in on-line protein database, using the MaxQuant 1.5.2.8 software. Statistical analyses were employed to identify proteins whose levels were sensibly different in the umbilical cords from malformed fetuses. Gene Ontology (GO) classification was used in order to obtain functional information of the differentially expressed proteins and to correlate them to the embryonic development. Finally, Matrix Metalloproteinases (MMPs) have been shown to play significant roles in a number of physiological processes, including embryogenesis and angiogenesis, but they also contribute to the development of pathological processes. Thus, gelatin zymography technique was performed to detect MMPs enzymatic activity in the umbilical cords. Our results support a significant role of MMPs in the fetus development. [edited by author]
XIV n.s.
Harris, Justin Clay. "NEW BIOINFORMATIC TECHNIQUES FOR THE ANALYSIS OF LARGE DATASETS". UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/544.
Texto completo da fonteRohen, V. E. "Applications of statistical pattern recognition techniques to the analysis of ballistocardiograms". Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235284.
Texto completo da fonteJeon, Seonghye. "Bayesian data mining techniques in public health and biomedical applications". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43712.
Texto completo da fonteJakeway, Stephen Christopher. "Development of optical techniques for biomolecule detection in miniaturized total analysis systems". Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271699.
Texto completo da fonteSeydnejad, Saeid Reza. "Analysis of heart rate variability and blood pressure variation by nonlinear modelling techniques". Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7814.
Texto completo da fonteD'Angelo, Maurissa S. "Analysis of Amputee Gait using Virtual Reality Rehabilitation Techniques". Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1279121086.
Texto completo da fonteBERNACCHIA, NATASCIA. "Measurement techniques based on image processing for the assessment of biomedical parameters". Doctoral thesis, Università Politecnica delle Marche, 2014. http://hdl.handle.net/11566/242751.
Texto completo da fonteBiomedical imaging represents an important topic in the field of diagnosis and clinical research. Image analysis and processing software also helps to automatically identify what might not be apparent to the human eye. The technological development and the use of different imaging modalities create more challenges, as the need to analyse a significant volume of images so that high quality information can be produced for disease diagnosis, treatment and monitoring, in clinical structures as well as at home. All the measurement systems routinely used in clinical environment require to be put in di-rect contact with the subject, which in some cases can be uncomfortable or even non-suited for long monitoring. On the other hand, in some cases contact could alter shape or composition of the samples under study, and state-of-the-art techniques could require a lot of time and provide very low resolution. This doctoral thesis presents a series of new experimental applications of the image analysis and processing in the biomedical field. The aim was to develop and validate new method-ologies, based on image analysis, for non contact measurement of quantities of different nature. The study is focused on the extraction of morphological characteristics of cell ag-gregates to assess of the regeneration processes in infarcted hearts, the design of a non con-tact methodology to measure mechanical properties of rabbit patellar tendons subjected to tensile tests, the development of new methods for the monitoring of physiological parame-ters (heart and respiration rate, chest volume variations) through the use of image acquisi-tion systems, as Kinect™ device and a digital camera. The experimental setups, designed in this work, were validated, showing high correlation respect to the reference methods. Imaging systems, although so different in many aspects, have demonstrated to be suitable for the respective tasks, confirming the feasibility of the imaging approach in the biomedical field.
Graça, Cristo dos Santos Lopes Ruano Maria da. "Investigation of real-time spectral analysis techniques for use with pulsed ultrasonic Doppler blood flow detectors". Thesis, Bangor University, 1992. https://research.bangor.ac.uk/portal/en/theses/investigation-of-realtime-spectral-analysis-techniques-for-use-with-pulsed-ultrasonic-doppler-blood-flow-detectors(f184d2a8-bde7-492a-b487-438704d3ea04).html.
Texto completo da fonteKirk, E. M. "Biomedical applications of narrow-bore liquid chromatography with computer-aided detection : Application of multivariate digital techniques to biomedical samples in narrow-bore column high-performance liquid chromatography with photodiode array detection". Thesis, University of Bradford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384276.
Texto completo da fonteLivros sobre o assunto "Biomedical analysis techniques"
Haidekker, Mark A. Advanced biomedical image analysis. Hoboken, N.J: John Wiley & Sons, 2010.
Encontre o texto completo da fonte1970-, Gonzalez Fabio A., e Romero Eduardo 1963-, eds. Biomedical image analysis and machine learning technologies: Applications and techniques. Hershey, PA: Medical Information Science Reference, 2010.
Encontre o texto completo da fonteKaraa, Wahiba Ben Abdessalem, e Nilanjan Dey. Biomedical image analysis and mining techniques for improved health outcomes. Hershey PA: Medical Information Science Reference, 2016.
Encontre o texto completo da fonte1970-, Gonzalez Fabio A., e Romero Eduardo 1963-, eds. Biomedical image analysis and machine learning technologies: Applications and techniques. Hershey, PA: Medical Information Science Reference, 2010.
Encontre o texto completo da fonteNorio, Ichinose, ed. Fluorometric analysis in biomedical chemistry: Trends and techniques including HPLC applications. New York: Wiley, 1991.
Encontre o texto completo da fonteSrinivasan, Gokulakrishnan. Vibrational spectroscopic imaging for biomedical applications. New York: McGraw-Hill, 2010.
Encontre o texto completo da fonteM, Cullum Brian, Carter J. Chance e Society of Photo-optical Instrumentation Engineers., eds. Smart medical and biomedical sensor technology IV: 3-4 October 2006, Boston, Massachusetts, USA. Bellingham, Wash., USA: SPIE, 2006.
Encontre o texto completo da fonteCullum, Brian M., e Eric S. McLamore. Smart biomedical and physiological sensor technology IX: 26 April 2012, Baltimore, Maryland, United States. Editado por SPIE (Society). Bellingham, Wash: SPIE, 2012.
Encontre o texto completo da fonteGannot, Israel. Optical fibers, sensors, and devices for biomedical diagnostics and treatment XI: 22-23 January 2011 San Francisco, California, United States. Bellingham: sponsored and published by SPIE, 2011.
Encontre o texto completo da fonteCullum, Brian M. Smart biomedical and physiological sensor technology VI: 16-17 April 2009, Orlando, Florida, United States. Bellingham, Wash: SPIE, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Biomedical analysis techniques"
Nisar, Muhammad Shemyal, e Xiangwei Zhao. "Nanophotonic Techniques for Single-Cell Analysis". In Nanophotonics in Biomedical Engineering, 79–109. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6137-5_4.
Texto completo da fonteFeng, Ting, Weiya Xie, Wenyi Xu, Ya Gao, Teng Liu, Dean Ta, Menglu Qian e Qian Cheng. "Photoacoustic Techniques for Bone Characterization". In Biomedical Photoacoustics, 433–75. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61411-8_17.
Texto completo da fonteHenao Higuita, María Camila, Macheily Hernández Fernández, Delio Aristizabal Martínez e Hermes Fandiño Toro. "Analysis of Finger Thermoregulation by Using Signal Processing Techniques". In Bioinformatics and Biomedical Engineering, 537–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17935-9_48.
Texto completo da fonteDussaut, J. S., C. A. Gallo, J. A. Carballido e I. Ponzoni. "Analysis of Gene Expression Discretization Techniques in Microarray Biclustering". In Bioinformatics and Biomedical Engineering, 257–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56154-7_24.
Texto completo da fontePuentes Vargas, Margarita. "Extraction Techniques". In Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment, 33–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06041-5_3.
Texto completo da fontePradhan, Jitesh, Arup Kumar Pal e Haider Banka. "Medical Image Retrieval System Using Deep Learning Techniques". In Deep Learning for Biomedical Data Analysis, 101–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71676-9_5.
Texto completo da fonteScriba, Gerhard K. E. "Chiral electromigration techniques in pharmaceutical and biomedical analysis". In Frontiers of Bioanalytical Chemistry, 225–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-36303-0_11.
Texto completo da fonteTina e Ritu Gupta. "Analysis of deep learning techniques in biomedical images". In Artificial Intelligence and Blockchain in Industry 4.0, 78–94. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003452591-6.
Texto completo da fontePrabha, R., V. Subashini, M. Aishwarya, B. Hemalatha e A. Sadhana. "Analysis of antenna for biomedical applications". In Antennas for Industrial and Medical Applications with Optimization Techniques for Wireless Communication, 151–61. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003560487-10.
Texto completo da fonteKaur, Raj Kamal, e Sarneet Kaur. "Exploring explainable AI: Techniques and comparative analysis". In Explainable Artificial Intelligence for Biomedical and Healthcare Applications, 1–14. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003220107-1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Biomedical analysis techniques"
Salazar, Sara Valentina Hernández, Javier Chaparro Preciado e Santiago Agudo Muñoz. "Comparative Analysis of Machine Learning and Deep Learning Techniques for Hand Gesture Recognition Using Surface Electromyography". In 2024 3rd International Congress of Biomedical Engineering and Bioengineering (CIIBBI), 1–6. IEEE, 2024. https://doi.org/10.1109/ciibbi63846.2024.10784625.
Texto completo da fonteMigla, Sandis, Oskars Selis, Pauls Eriks Sics e Arturs Aboltins. "Error Analysis and Correction Techniques for PPM Communication Links with Jitter and Clock Drift". In 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666259.
Texto completo da fonteCerri, G., R. De Leo e A. Spalvieri. "Microstrip Disk Applicators for Biomedical Applications: A Very Efficient Numerical Analysis Technique". In EMC_1986_Wroclaw, 62–70. IEEE, 1986. https://doi.org/10.23919/emc.1986.10828529.
Texto completo da fonteMa, Jianguo, Min Wei, Lijun Xu, Boya Chen, Yulin Liu, Jie Du e Zijie Fang. "Ultrasonic spectral analysis for biomedical imaging". In 2017 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2017. http://dx.doi.org/10.1109/ist.2017.8261549.
Texto completo da fonteEssa, Hayder J., e Issa Jaafar. "New analysis techniques for blood pressure biomedical signals". In 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976177.
Texto completo da fonteChen, Xuequan, Emma Pickwell-MacPherson, Qiushuo Sun, Jiarui Wang, Hannah Lindley, Kai Liu, Kaidi Li, Xavier Barker, Rayko Stantchev e Arturo Hernandez. "THz Instrumentation and Analysis Techniques for Biomedical Research". In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874398.
Texto completo da fonteRobb, Richard A., Armando Manduca, Dennis P. Hanson e Ronald A. Karwoski. "Advanced techniques in volume visualization and analysis". In Visualization in Biomedical Computing, editado por Richard A. Robb. SPIE, 1992. http://dx.doi.org/10.1117/12.131124.
Texto completo da fonteOrtiz, Sergio, Pablo Pérez-Merino, Enrique Gambra e Susana Marcos. "Image analysis and quantification in anterior segment OCT: techniques and applications". In Biomedical Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/biomed.2012.btu2b.6.
Texto completo da fonteCostea, I. M., C. I. Dumitrescu, N. Dumitru e B. Soare. "Biomedical signals analysis techniques using the signal processor TMS320C6211B". In 2014 37th ISSE International Spring Seminar in Electronics Technology (ISSE). IEEE, 2014. http://dx.doi.org/10.1109/isse.2014.6887617.
Texto completo da fonteGaeta, Giovanni M., Flora Zenone, Carlo Camerlingo, Roberto Riccio, Gianfranco Moro, Maria Lepore e Pietro L. Indovina. "Data analysis in Raman measurements of biological tissues using wavelet techniques". In Biomedical Optics 2005, editado por Peter Rechmann e Daniel Fried. SPIE, 2005. http://dx.doi.org/10.1117/12.593394.
Texto completo da fonteRelatórios de organizações sobre o assunto "Biomedical analysis techniques"
Vingre, Anete, Peter Kolarz e Billy Bryan. On your marks, get set, fund! Rapid responses to the Covid-19 pandemic. Fteval - Austrian Platform for Research and Technology Policy Evaluation, abril de 2022. http://dx.doi.org/10.22163/fteval.2022.538.
Texto completo da fonte