Literatura científica selecionada sobre o tema "Biogeochemical effects"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Biogeochemical effects".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Biogeochemical effects"
Chi, Zhi-Lai, e Guang-Hui Yu. "Nanozyme-mediated elemental biogeochemical cycling and environmental effects". Science China Earth Sciences 64, n.º 7 (3 de junho de 2021): 1015–25. http://dx.doi.org/10.1007/s11430-020-9756-5.
Texto completo da fonteLuís, Ana Teresa, Manuela Teixeira, Nuno Durães, Raquel Pinto, Salomé F. P. Almeida, Eduardo Ferreira da Silva e Etelvina Figueira. "Extremely acidic environment: Biogeochemical effects on algal biofilms". Ecotoxicology and Environmental Safety 177 (agosto de 2019): 124–32. http://dx.doi.org/10.1016/j.ecoenv.2019.04.001.
Texto completo da fonteFuhrman, Jed A. "Marine viruses and their biogeochemical and ecological effects". Nature 399, n.º 6736 (junho de 1999): 541–48. http://dx.doi.org/10.1038/21119.
Texto completo da fontePortnoy, J. W., e A. E. Giblin. "BIOGEOCHEMICAL EFFECTS OF SEAWATER RESTORATION TO DIKED SALT MARSHES". Ecological Applications 7, n.º 3 (agosto de 1997): 1054–63. http://dx.doi.org/10.1890/1051-0761(1997)007[1054:beosrt]2.0.co;2.
Texto completo da fonteWang, Fushun, Stephen C. Maberly, Baoli Wang e Xia Liang. "Effects of dams on riverine biogeochemical cycling and ecology". Inland Waters 8, n.º 2 (3 de abril de 2018): 130–40. http://dx.doi.org/10.1080/20442041.2018.1469335.
Texto completo da fonteLenton, Timothy M., e Stuart J. Daines. "Matworld - the biogeochemical effects of early life on land". New Phytologist 215, n.º 2 (24 de novembro de 2016): 531–37. http://dx.doi.org/10.1111/nph.14338.
Texto completo da fonteZepp, R. G., T. V. Callaghan e D. J. Erickson. "Effects of enhanced solar ultraviolet radiation on biogeochemical cycles". Journal of Photochemistry and Photobiology B: Biology 46, n.º 1-3 (outubro de 1998): 69–82. http://dx.doi.org/10.1016/s1011-1344(98)00186-9.
Texto completo da fonteHerrmann, R., R. Stottlemyer, J. C. Zak, R. L. Edmonds e H. Van Miegroet. "BIOGEOCHEMICAL EFFECTS OF GLOBAL CHANGE ON U.S. NATIONAL PARKS1". JAWRA Journal of the American Water Resources Association 36, n.º 2 (abril de 2000): 337–46. http://dx.doi.org/10.1111/j.1752-1688.2000.tb04272.x.
Texto completo da fonteDavies-Barnard, Taraka, Andy Ridgwell, Joy Singarayer e Paul Valdes. "Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics". Climate of the Past 13, n.º 10 (26 de outubro de 2017): 1381–401. http://dx.doi.org/10.5194/cp-13-1381-2017.
Texto completo da fonteBush, T., I. B. Butler, A. Free e R. J. Allen. "Redox regime shifts in microbially mediated biogeochemical cycles". Biogeosciences 12, n.º 12 (17 de junho de 2015): 3713–24. http://dx.doi.org/10.5194/bg-12-3713-2015.
Texto completo da fonteTeses / dissertações sobre o assunto "Biogeochemical effects"
Miller, Bradley W. "Long-term Effects of Fertilization on Phosphorus Biogeochemical Pools in Forest Soils". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/37386.
Texto completo da fontePh. D.
Murphy, Anna Elizabeth. "Effects of commercial clam aquaculture on biogeochemical cycling in shallow coastal ecosystems". W&M ScholarWorks, 2015. https://scholarworks.wm.edu/etd/1539616787.
Texto completo da fonteIwasaki, Kenta. "Effects of bedrock groundwater dynamics on hydro-biogeochemical processes in granitic headwater catchments". Kyoto University, 2018. http://hdl.handle.net/2433/232152.
Texto completo da fonteTritschler, Sarah J. "Biogeochemical Processes and Seasonal Effects in Flow-Through Mesocosm Reactors Simulating Constructed Wetlands". Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1198819178.
Texto completo da fonteLancaster, Nicole N. M. "Effects of salinity on biogeochemical processes and methylmercury production in freshwater wetland sediments". View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-3//r1/lancastern/nicolelancaster.pdf.
Texto completo da fonteWilson, Cullen. "Biogeochemical Effects of Lime-Treated Biosolids Amendments on Soils in a Northeastern Forested Ecosystem". Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/WilsonC2008.pdf.
Texto completo da fonteHeinle, Moritz. "The effects of light, temperature and nutrients on coccolithophores and implications for biogeochemical models". Thesis, University of East Anglia, 2013. https://ueaeprints.uea.ac.uk/48676/.
Texto completo da fonteColson, Christopher G. Lockaby Bruce Graeme. "Biogeochemical effects of silviculture management on intermittant streamside management zones in the coastal plain of Alabama". Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Forestry_and_Wildlife_Sciences/Thesis/Colson_Christopher_20.pdf.
Texto completo da fonteTrentman, Matthew T. "Biotic and abiotic effects on biogeochemical fluxes across multiple spatial scales in a prairie stream network". Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/19750.
Texto completo da fonteDivision of Biology
Walter K. Dodds
Understanding the variability of ecological processes across spatial scales is a central issue in ecology, because increasing scale is often associated with increasing complexity. In streams, measurements of biogeochemical fluxes are important for determining ecosystem health and the downstream delivery of nutrients, but are often collected at scales with benthic areas measured in spatial areas from ~10 cm[superscript]2 to ~100 m[superscript]2 (referred to here as patch and reach, respectively), which are smaller than the scale that management decisions are made. Both biotic and abiotic factors will be important when attempting to predict (i.e. scale) biogeochemical rates, but few studies have simultaneously measured rates and their primary drivers at different spatial scales. In the first chapter, I used a conceptual scaling framework to evaluate the ability to additively scale biogeochemical rates by comparing measurements of ecosystem respiration (ER) and gross primary production (GPP) from patch to reach-scales across multiple sites over a two-year period in a prairie stream. Patch-scale measurements with and without fish (biotic factors) and abiotic factors measured simultaneously with metabolic rates suggest that abiotic conditions are stronger drivers of these rates. Patch-scale rates significantly overestimated reach rates for ER and GPP after corrections for habitat heterogeneity, temperature and light, and a variety of stream substrata compartments. I show the importance of determining abiotic and biotic drivers, which can be determined through observational or experimental measurements, when building models for scaling biogeochemical rates. In the second chapter, I further examined patch-scale abiotic and biotic drivers of multiple biogeochemical rates (ER, GPP, and ammonium uptake) using path analyses and data from chapter 2. Total model-explained variance was highest for ER (65% as R[superscript]2) and lowest for GPP and ammonium uptake (38%). Fish removal directly increased ammonium uptake, while all rates were indirectly affected by fish removal through changes in either FBOM and /or algal biomass. Significant paths of abiotic factors varied with each model. Large-scale processes (i.e. climate change and direct anthropogenic disturbances), and local biotic and abiotic drivers should all be considered when attempting to predict stream biogeochemical fluxes at varying spatial scales.
Spencer, David. "The Effects of Oceanographic Drivers on the Catchability of Spanner Crabs". Thesis, Griffith University, 2018. http://hdl.handle.net/10072/380993.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Livros sobre o assunto "Biogeochemical effects"
Howe, John T. Biogeochemical cycling in the ocean. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1986.
Encontre o texto completo da fonteBraun, Christopher L. Water-level variations and their effects on tree growth and mortality and on the biogeochemical system at the phytoremediation demonstration site in Fort Worth, Texas, 1996-2003. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Encontre o texto completo da fonteL, Braun Christopher, Geological Survey (U.S.) e Aeronautical Systems Center (U.S.). Environmental Management Directorate, eds. Water-level variations and their effects on tree growth and mortality and on the biogeochemical system at the phytoremediation demonstration site in Fort Worth, Texas, 1996-2003. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Encontre o texto completo da fonteBraun, Christopher L. Water-level variations and their effects on tree growth and mortality and on the biogeochemical system at the phytoremediation demonstration site in Fort Worth, Texas, 1996-2003. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Encontre o texto completo da fonteL, Braun Christopher, Geological Survey (U.S.) e Aeronautical Systems Center (U.S.). Environmental Management Directorate., eds. Water-level variations and their effects on tree growth and mortality and on the biogeochemical system at the phytoremediation demonstration site in Fort Worth, Texas, 1996-2003. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Encontre o texto completo da fonteL, Braun Christopher, Geological Survey (U.S.) e Aeronautical Systems Center (U.S.). Environmental Management Directorate., eds. Water-level variations and their effects on tree growth and mortality and on the biogeochemical system at the phytoremediation demonstration site in Fort Worth, Texas, 1996-2003. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Encontre o texto completo da fonteMannion, Antoinette M. Global environmental change: The disruption of biogeochemical cycles / A.M. Mannion. Reading, U.K: Department of Geography, University of Reading, 1998.
Encontre o texto completo da fonteR, Wollast, Mackenzie Fred T. 1934-, Chou Lei 1953-, North Atlantic Treaty Organization. Scientific Affairs Division. e NATO Advanced Research Workshop on Interactions of C,N,P, and S Biogeochemical Cycles (1991 : Melreux, Belgium), eds. Interactions of C, N, P, and S biogeochemical cycles and global change. Berlin: Springer-Verlag, 1993.
Encontre o texto completo da fontePaul, Bennett. Earth, the incredible recycling machine. New York: Thomson Learning, 1993.
Encontre o texto completo da fonteLukashev, K. I. Trevogi i nadezhdy: Izmeni͡a︡i͡u︡shchai͡a︡si͡a︡ biosfera. Minsk: "Nauka i tekhnika", 1987.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Biogeochemical effects"
Boucher, Olivier. "Biogeochemical Effects and Climate Feedbacks of Aerosols". In Atmospheric Aerosols, 247–69. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9649-1_11.
Texto completo da fonteFalkowski, Paul G. "The Oceanic Photosynthetic Engine: Origins, Evolution, and Role in Global Biogeochemical Cycles". In Photosynthesis: Mechanisms and Effects, 3941–47. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_916.
Texto completo da fonteLorenz, Klaus, e Rattan Lal. "Biogeophysical and Biogeochemical Climate Effects of Organic Agriculture". In Organic Agriculture and Climate Change, 177–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17215-1_4.
Texto completo da fonteHelbling, E. W., V. Villafañe, M. Ferrario e O. Holm-Hansen. "Effects of Ultraviolet Radiation on Marine Phytoplankton". In Primary Productivity and Biogeochemical Cycles in the Sea, 514. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-0762-2_42.
Texto completo da fonteVan Klinken, Gert J., Mike P. Richards e Bert E. M. Hedges. "An Overview of Causes for Stable Isotopic Variations in Past European Human Populations: Environmental, Ecophysiological, and Cultural Effects". In Biogeochemical Approaches to Paleodietary Analysis, 39–63. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47194-9_3.
Texto completo da fonteBergman, Magda J. N., e Han J. Lindeboom. "Natural Variability and the Effects of Fisheries in the North Sea: Towards an Integrated Fisheries and Ecosystem Management?" In Biogeochemical Cycling and Sediment Ecology, 173–84. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4649-4_11.
Texto completo da fonteRigina, Olga, e Alexander Baklanov. "Trends in Sulfur Emission-Induced Effects in Northern Europe". In Biogeochemical Investigations at Watershed, Landscape, and Regional Scales, 331–42. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-0906-4_30.
Texto completo da fonteMarra, John, e Thomas S. Moore. "Monsoons, islands, and eddies: Their effects on phytoplankton in the Indian Ocean". In Indian Ocean Biogeochemical Processes and Ecological Variability, 57–70. Washington, D. C.: American Geophysical Union, 2009. http://dx.doi.org/10.1029/2008gm000701.
Texto completo da fonteHaese, R. R. "Macrobenthic Activity and its Effects on Biogeochemical Reactions and Fluxes". In Ocean Margin Systems, 219–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05127-6_14.
Texto completo da fonteDe Angelis, Martine, e Michel Legrand. "Preliminary Investigations of Post Depositional Effects on HCl, HNO3, and Organic Acids in Polar Firn Layers". In Ice Core Studies of Global Biogeochemical Cycles, 361–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-51172-1_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Biogeochemical effects"
Bushey, Joseph, Steven Brady, Steven Brady, Alejandra Aragon-Jose, Alejandra Aragon-Jose, Nakita Lancaster, Nakita Lancaster et al. "ROAD EFFECTS ON BIOGEOCHEMICAL CYCLING". In 51st Annual Northeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016ne-272892.
Texto completo da fonte"Biogeochemical Carbon Cycle and its Effects". In 2nd International Conference on Frontiers in Academic Research ICFAR 2023. All Sciences Academy, 2023. http://dx.doi.org/10.59287/as-proceedings.530.
Texto completo da fonteMa, Yueliang, e Ruisong Xu. "Biogeochemical effects and remote sensing characteristics of gold deposit". In Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space, editado por Robert O. Green e Qingxi Tong. SPIE, 1998. http://dx.doi.org/10.1117/12.317794.
Texto completo da fonteGray, Katelyn, Deb Jaisi, Donald Sparks e Lisa Stout. "Effects of salinity on biogeochemical cycling of phosphorus in coastal soil". In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4940.
Texto completo da fonteMehr, Nicole K., Joseph M. Balnis, Brian W. Redder e Zsuzsanna Balogh-Brunstad. "THE BIOGEOCHEMICAL EFFECTS OF THE HEMLOCK WOOLLY ADELGID ON SOIL WATER CHEMISTRY". In 51st Annual Northeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016ne-272378.
Texto completo da fonteDontsova, Katerina, Ghiwa Makke, Malak Tfaily, Aditi Sengupta, Justin Garcia, Jon Chorover, Luis Cortes, Scott Saleska e Elizabeth Arnold. "Effects of biocrust formation and moss colonization on biogeochemical properties of basaltic tephra". In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.20292.
Texto completo da fonteGrbović, Filip, Gordana Gajić, Snežana Branković, Zoran Simić, Andrija Ćirić, Danijela Mišić e Marina Topuzović. "MOGUĆNOSTI I RIZICI PRIMENE INVAZIVNIH DRVENASTIH VRSTA U OBNOVI VEGETACIJE NA DEGRADIRANIM STANIŠTIMA". In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.309g.
Texto completo da fonteMariam Paul, Nivya, e Variampally Sankar Harikumar. "Effects of biochar on soil microbial community composition using PLFA profiling- A review". In 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.5.
Texto completo da fonteMohammed, Aboobacker Valliyil, Fazle Rakib, Ibrahim M. A. S. Al-Ansari, Yusuf Sinan Husrevoglu, Oguz Yigiterhan, Ibrahim A. M. J. Al-Maslamani e Vethamony Ponnumony. "Variability of Physical and Biogeochemical Parameters in the Exclusive Economic Zone of Qatar". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0030.
Texto completo da fontePenta, B., D. Ko, R. Gould, R. Arnone, R. Greene, J. Lehrter, J. Hagy et al. "Using coupled models to study the effects of river discharge on biogeochemical cycling and hypoxia in the northern Gulf Of Mexico". In OCEANS 2009. IEEE, 2009. http://dx.doi.org/10.23919/oceans.2009.5422347.
Texto completo da fonteRelatórios de organizações sobre o assunto "Biogeochemical effects"
Cooley, S. R., D. J. P. Moore, S. R. Alin, D. Butman, D. W. Clow, N. H. F. French, R. A. Feely et al. Chapter 17: Biogeochemical Effects of Rising Atmospheric Carbon Dioxide. Second State of the Carbon Cycle Report. Editado por N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao e Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch17.
Texto completo da fonteSeifert, Miriam, Claudia Hinrichs, Judith Hauck e Christoph Völker. New / improved model parametrizations for responses in phytoplankton growth and calcification to changes in alkalinity implemented. OceanNets, março de 2023. http://dx.doi.org/10.3289/oceannets_d4.5.
Texto completo da fonteSommer, Stefan. Potential effects of the exclusion of bottom fishing in the marine protected areas (MPAs) of the western Baltic Sea – third year observations Cruise No. AL570 22.03. – 11.04.2022, Kiel (Germany) – Kiel (Germany) MGF-OSTSEE-2022. GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, 2022. http://dx.doi.org/10.3289/cr_al570.
Texto completo da fonteTaucher, Jan, e Markus Schartau. Report on parameterizing seasonal response patterns in primary- and net community production to ocean alkalinization. OceanNETs, novembro de 2021. http://dx.doi.org/10.3289/oceannets_d5.2.
Texto completo da fonteTaucher, Jan, e Markus Schartau. Report on parameterizing seasonal response patterns in primary- and net community production to ocean alkalinization. OceanNETs, 2021. http://dx.doi.org/10.3289/oceannets_d5.3.
Texto completo da fonteChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova e Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, janeiro de 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Texto completo da fonteMicrobes in Models: Integrating Microbes into Earth System Models for Understanding Climate Change. American Society for Microbiology, junho de 2023. http://dx.doi.org/10.1128/aamcol.jun.2023.
Texto completo da fonte