Artigos de revistas sobre o tema "Biofilm cultures"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Biofilm cultures".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
SHEFFIELD, C. L., T. L. CRIPPEN, K. ANDREWS, R. J. BONGAERTS e D. J. NISBET. "Planktonic and Biofilm Communities from 7-Day-Old Chicken Cecal Microflora Cultures: Characterization and Resistance to Salmonella Colonization†". Journal of Food Protection 72, n.º 9 (1 de setembro de 2009): 1812–20. http://dx.doi.org/10.4315/0362-028x-72.9.1812.
Texto completo da fonteSchooling, S. R., U. K. Charaf, D. G. Allison e P. Gilbert. "A role for rhamnolipid in biofilm dispersion". Biofilms 1, n.º 2 (abril de 2004): 91–99. http://dx.doi.org/10.1017/s147905050400119x.
Texto completo da fonteFrederick, Jesse R., James G. Elkins, Nikki Bollinger, Daniel J. Hassett e Timothy R. McDermott. "Factors Affecting Catalase Expression in Pseudomonas aeruginosa Biofilms and Planktonic Cells". Applied and Environmental Microbiology 67, n.º 3 (1 de março de 2001): 1375–79. http://dx.doi.org/10.1128/aem.67.3.1375-1379.2001.
Texto completo da fonteMINEI, CLÁUDIA C., BRUNA C. GOMES, REGIANNE P. RATTI, CARLOS E. M. D'ANGELIS e ELAINE C. P. DE MARTINIS. "Influence of Peroxyacetic Acid and Nisin and Coculture with Enterococcus faecium on Listeria monocytogenes Biofilm Formation". Journal of Food Protection 71, n.º 3 (1 de março de 2008): 634–38. http://dx.doi.org/10.4315/0362-028x-71.3.634.
Texto completo da fonteVidal, Jorge E., Joshua R. Shak e Adrian Canizalez-Roman. "The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms". Infection and Immunity 83, n.º 6 (30 de março de 2015): 2430–42. http://dx.doi.org/10.1128/iai.00240-15.
Texto completo da fonteWolyniak, E. A., B. R. Hargreaves e K. L. Jellison. "Retention and Release of Cryptosporidium parvum Oocysts by Experimental Biofilms Composed of a Natural Stream Microbial Community". Applied and Environmental Microbiology 75, n.º 13 (15 de maio de 2009): 4624–26. http://dx.doi.org/10.1128/aem.02916-08.
Texto completo da fonteRahmani-Badi, Azadeh, Shayesteh Sepehr, Parisa Mohammadi, Mohammad Reza Soudi, Hamta Babaie-Naiej e Hossein Fallahi. "A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms". Journal of Medical Microbiology 63, n.º 11 (1 de novembro de 2014): 1509–16. http://dx.doi.org/10.1099/jmm.0.075374-0.
Texto completo da fonteBryers, James D., e Huang Ching-Tsan. "Recombinant plasmid retention and expression in bacterial biofilm cultures". Water Science and Technology 31, n.º 1 (1 de janeiro de 1995): 105–15. http://dx.doi.org/10.2166/wst.1995.0025.
Texto completo da fonteChinnici, Jennifer, Lisa Yerke, Charlene Tsou, Sujay Busarajan, Ryan Mancuso, Nishanth D. Sadhak, Jaewon Kim e Abhiram Maddi. "Candida albicans cell wall integrity transcription factors regulate polymicrobial biofilm formation with Streptococcus gordonii". PeerJ 7 (11 de outubro de 2019): e7870. http://dx.doi.org/10.7717/peerj.7870.
Texto completo da fonteKay, Matthew K., Thomas C. Erwin, Robert J. C. McLean e Gary M. Aron. "Bacteriophage Ecology inEscherichia coliandPseudomonas aeruginosaMixed-Biofilm Communities". Applied and Environmental Microbiology 77, n.º 3 (3 de dezembro de 2010): 821–29. http://dx.doi.org/10.1128/aem.01797-10.
Texto completo da fonteChao, Jerry, Gideon M. Wolfaardt e Michael T. Arts. "Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms and batch planktonic cultures". Canadian Journal of Microbiology 56, n.º 12 (dezembro de 2010): 1028–39. http://dx.doi.org/10.1139/w10-093.
Texto completo da fonteVacheva, Anna, Ralitsa Georgieva, Svetla Danova, Radka Mihova, Mariana Marhova, Sonia Kostadinova, Krasimira Vasileva, Maria Bivolarska e Stoyanka Stoitsova. "Modulation of Escherichia coli biofilm growth by cell-free spent cultures from lactobacilli". Open Life Sciences 7, n.º 2 (1 de abril de 2012): 219–29. http://dx.doi.org/10.2478/s11535-012-0004-9.
Texto completo da fonteRosca, Aliona S., Joana Castro e Nuno Cerca. "Evaluation of different culture media to support in vitro growth and biofilm formation of bacterial vaginosis-associated anaerobes". PeerJ 8 (10 de setembro de 2020): e9917. http://dx.doi.org/10.7717/peerj.9917.
Texto completo da fonteBehnke, Sabrina, Albert E. Parker, Dawn Woodall e Anne K. Camper. "Comparing the Chlorine Disinfection of Detached Biofilm Clusters with Those of Sessile Biofilms and Planktonic Cells in Single- and Dual-Species Cultures". Applied and Environmental Microbiology 77, n.º 20 (19 de agosto de 2011): 7176–84. http://dx.doi.org/10.1128/aem.05514-11.
Texto completo da fonteNuryastuti, Titik, Henny C. van der Mei, Henk J. Busscher, Susi Iravati, Abu T. Aman e Bastiaan P. Krom. "Effect of Cinnamon Oil on icaA Expression and Biofilm Formation by Staphylococcus epidermidis". Applied and Environmental Microbiology 75, n.º 21 (11 de setembro de 2009): 6850–55. http://dx.doi.org/10.1128/aem.00875-09.
Texto completo da fonteVillemur, Richard, Geneviève Payette, Valérie Geoffroy, Florian Mauffrey e Christine Martineau. "Dynamics of a methanol-fed marine denitrifying biofilm: 2—impact of environmental changes on the microbial community". PeerJ 7 (13 de agosto de 2019): e7467. http://dx.doi.org/10.7717/peerj.7467.
Texto completo da fonteRoberts, Mark E., e Philip S. Stewart. "Modelling protection from antimicrobial agents in biofilms through the formation of persister cells". Microbiology 151, n.º 1 (1 de janeiro de 2005): 75–80. http://dx.doi.org/10.1099/mic.0.27385-0.
Texto completo da fonteVieira, M. J., e L. F. Melo. "Effect of clay particles on the behaviour of biofilms formed by Pseudomonas fluorescens". Water Science and Technology 32, n.º 8 (1 de outubro de 1995): 45–52. http://dx.doi.org/10.2166/wst.1995.0260.
Texto completo da fonteNavarrete, Fernando, e Leonardo De La Fuente. "Response of Xylella fastidiosa to Zinc: Decreased Culturability, Increased Exopolysaccharide Production, and Formation of Resilient Biofilms under Flow Conditions". Applied and Environmental Microbiology 80, n.º 3 (22 de novembro de 2013): 1097–107. http://dx.doi.org/10.1128/aem.02998-13.
Texto completo da fonteThomas, Vinai Chittezham, Lance R. Thurlow, Dan Boyle e Lynn E. Hancock. "Regulation of Autolysis-Dependent Extracellular DNA Release by Enterococcus faecalis Extracellular Proteases Influences Biofilm Development". Journal of Bacteriology 190, n.º 16 (13 de junho de 2008): 5690–98. http://dx.doi.org/10.1128/jb.00314-08.
Texto completo da fonteDarmasiwi, Sari, Oktaviana Herawati e Endah Retnaningrum. "Edible biofilm formation from guava seed waste fermentation". Digital Press Physical Sciences and Engineering 1 (2018): 00005. http://dx.doi.org/10.29037/digitalpress.11244.
Texto completo da fonteVerkholyuk, Mykola, Ruslan Peleno e Iaromyr Turko. "RESISTANCE OF S. AUREUS ATCC 25923, E. COLI 055K59 No. 3912/41 AND P. AERUGINOSA 27/99 TO THE WASH-DISINFECTANT «MILKODEZ»". EUREKA: Health Sciences 1 (31 de janeiro de 2020): 55–60. http://dx.doi.org/10.21303/2504-5679.2020.001100.
Texto completo da fonteWebb, Jeremy S., Mathew Lau e Staffan Kjelleberg. "Bacteriophage and Phenotypic Variation in Pseudomonas aeruginosa Biofilm Development". Journal of Bacteriology 186, n.º 23 (1 de dezembro de 2004): 8066–73. http://dx.doi.org/10.1128/jb.186.23.8066-8073.2004.
Texto completo da fonteWest-Barnette, Shayla, Andrea Rockel e W. Edward Swords. "Biofilm Growth Increases Phosphorylcholine Content and Decreases Potency of Nontypeable Haemophilus influenzae Endotoxins". Infection and Immunity 74, n.º 3 (março de 2006): 1828–36. http://dx.doi.org/10.1128/iai.74.3.1828-1836.2006.
Texto completo da fonteDohare, Suhaga, Devendra Singh, Deepmala Sharma e Vishnu Agarwal. "EFFECT OF Staphylococcus epidermidis ON Pseudomonas aeruginosa BIOFILM IN MIXED-SPECIES CULTURE". Journal of Experimental Biology and Agricultural Sciences 9, n.º 3 (25 de junho de 2021): 325–34. http://dx.doi.org/10.18006/2021.9(3).325.334.
Texto completo da fonteHenry-Stanley, Michelle J., Donavon J. Hess e Carol L. Wells. "Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent". Journal of Medical Microbiology 63, n.º 6 (1 de junho de 2014): 861–69. http://dx.doi.org/10.1099/jmm.0.068130-0.
Texto completo da fonteKoch, John A., Taylor M. Pust, Alex J. Cappellini, Jonathan B. Mandell, Dongzhu Ma, Neel B. Shah, Kimberly M. Brothers e Kenneth L. Urish. "Staphylococcus epidermidis Biofilms Have a High Tolerance to Antibiotics in Periprosthetic Joint Infection". Life 10, n.º 11 (24 de outubro de 2020): 253. http://dx.doi.org/10.3390/life10110253.
Texto completo da fonteLiu, Zhi, Fiona R. Stirling e Jun Zhu. "Temporal Quorum-Sensing Induction Regulates Vibrio cholerae Biofilm Architecture". Infection and Immunity 75, n.º 1 (30 de outubro de 2006): 122–26. http://dx.doi.org/10.1128/iai.01190-06.
Texto completo da fonteCholo, Moloko C., Sipho S. M. Rasehlo, Eudri Venter, Chantelle Venter e Ronald Anderson. "Effects of Cigarette Smoke Condensate on Growth and Biofilm Formation by Mycobacterium tuberculosis". BioMed Research International 2020 (19 de agosto de 2020): 1–7. http://dx.doi.org/10.1155/2020/8237402.
Texto completo da fonteMaggio, Francesca, Chiara Rossi, Clemencia Chaves-López, Annalisa Serio, Luca Valbonetti, Francesco Pomilio, Alessio Pio Chiavaroli e Antonello Paparella. "Interactions between L. monocytogenes and P. fluorescens in Dual-Species Biofilms under Simulated Dairy Processing Conditions". Proceedings 70, n.º 1 (9 de novembro de 2020): 80. http://dx.doi.org/10.3390/foods_2020-07625.
Texto completo da fonteRamalingam, B., R. Sekar, J. B. Boxall e C. A. Biggs. "Aggregation and biofilm formation of bacteria isolated from domestic drinking water". Water Supply 13, n.º 4 (1 de agosto de 2013): 1016–23. http://dx.doi.org/10.2166/ws.2013.115.
Texto completo da fonteSchafer, Mark E., e Tessie McNeely. "Combining Visible Light and Non-Focused Ultrasound Significantly Reduces Propionibacterium acnes Biofilm While Having Limited Effect on Host Cells". Microorganisms 9, n.º 5 (26 de abril de 2021): 929. http://dx.doi.org/10.3390/microorganisms9050929.
Texto completo da fonteKuznetsova, Marina V., Irina L. Maslennikova, Tamara I. Karpunina, Larisa Yu Nesterova e Vitaly A. Demakov. "Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro". Canadian Journal of Microbiology 59, n.º 9 (setembro de 2013): 604–10. http://dx.doi.org/10.1139/cjm-2013-0168.
Texto completo da fontePayette, Geneviève, Valérie Geoffroy, Christine Martineau e Richard Villemur. "Dynamics of a methanol-fed marine denitrifying biofilm: 1-Impact of environmental changes on the denitrification and the co-occurrence of Methylophaga nitratireducenticrescens and Hyphomicrobium nitrativorans". PeerJ 7 (13 de agosto de 2019): e7497. http://dx.doi.org/10.7717/peerj.7497.
Texto completo da fonteSpoering, Amy L., e Kim Lewis. "Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials". Journal of Bacteriology 183, n.º 23 (1 de dezembro de 2001): 6746–51. http://dx.doi.org/10.1128/jb.183.23.6746-6751.2001.
Texto completo da fonteHARGREAVES, D. G., A. PAJKOS, A. K. DEVA, K. VICKERY, S. L. FILAN e M. A. TONKIN. "The Role of Biofilm Formation in Percutaneous Kirschner-Wire Fixation of Radial Fractures". Journal of Hand Surgery 27, n.º 4 (agosto de 2002): 365–68. http://dx.doi.org/10.1054/jhsb.2002.0756.
Texto completo da fonteElkins, James G., Daniel J. Hassett, Philip S. Stewart, Herbert P. Schweizer e Timothy R. McDermott. "Protective Role of Catalase in Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide". Applied and Environmental Microbiology 65, n.º 10 (1 de outubro de 1999): 4594–600. http://dx.doi.org/10.1128/aem.65.10.4594-4600.1999.
Texto completo da fonteSaginur, Raphael, Melissa StDenis, Wendy Ferris, Shawn D. Aaron, Francis Chan, Craig Lee e Karam Ramotar. "Multiple Combination Bactericidal Testing of Staphylococcal Biofilms from Implant-Associated Infections". Antimicrobial Agents and Chemotherapy 50, n.º 1 (janeiro de 2006): 55–61. http://dx.doi.org/10.1128/aac.50.1.55-61.2006.
Texto completo da fonteZannier, Federico, Luciano Raúl Portero, Omar Federico Ordoñez, Luciano José Martinez, María Eugenia Farías e Virginia Helena Albarracin. "Polyextremophilic Bacteria from High Altitude Andean Lakes: Arsenic Resistance Profiles and Biofilm Production". BioMed Research International 2019 (21 de fevereiro de 2019): 1–11. http://dx.doi.org/10.1155/2019/1231975.
Texto completo da fonteNiemira, Brendan A., e Ethan B. Solomon. "Sensitivity of Planktonic and Biofilm-Associated Salmonella spp. to Ionizing Radiation". Applied and Environmental Microbiology 71, n.º 5 (maio de 2005): 2732–36. http://dx.doi.org/10.1128/aem.71.5.2732-2736.2005.
Texto completo da fonteMaggio, Francesca, Chiara Rossi, Clemencia Chaves-López, Annalisa Serio, Luca Valbonetti, Francesco Pomilio, Alessio Pio Chiavaroli e Antonello Paparella. "Interactions between L. monocytogenes and P. fluorescens in Dual-Species Biofilms under Simulated Dairy Processing Conditions". Foods 10, n.º 1 (16 de janeiro de 2021): 176. http://dx.doi.org/10.3390/foods10010176.
Texto completo da fonteValieva, R. I., S. A. Lisovskaya, K. A. Mayanskaya, D. V. Samigullin e G. Sh Isaeva. "Features of antifungal therapy during long-lasting infectious process: a clinical case of fungal keratitis and profile of antifungal sensitivity based on assessing biofilm formation". Russian Journal of Infection and Immunity 11, n.º 4 (20 de setembro de 2021): 789–97. http://dx.doi.org/10.15789/2220-7619-foa-1495.
Texto completo da fonteHunt, Stephen M., Erin M. Werner, Baochuan Huang, Martin A. Hamilton e Philip S. Stewart. "Hypothesis for the Role of Nutrient Starvation in Biofilm Detachment". Applied and Environmental Microbiology 70, n.º 12 (dezembro de 2004): 7418–25. http://dx.doi.org/10.1128/aem.70.12.7418-7425.2004.
Texto completo da fonteGerner, Erik, Sofia Almqvist, Peter Thomsen, Maria Werthén e Margarita Trobos. "Sodium Salicylate Influences the Pseudomonas aeruginosa Biofilm Structure and Susceptibility Towards Silver". International Journal of Molecular Sciences 22, n.º 3 (21 de janeiro de 2021): 1060. http://dx.doi.org/10.3390/ijms22031060.
Texto completo da fonteCushion, Melanie T., e Margaret S. Collins. "Susceptibility of Pneumocystis to Echinocandins in Suspension and Biofilm Cultures". Antimicrobial Agents and Chemotherapy 55, n.º 10 (25 de julho de 2011): 4513–18. http://dx.doi.org/10.1128/aac.00017-11.
Texto completo da fonteHathroubi, Skander, Francis Beaudry, Chantale Provost, Léa Martelet, Mariela Segura, Carl A. Gagnon e Mario Jacques. "Impact ofActinobacillus pleuropneumoniaebiofilm mode of growth on the lipid A structures and stimulation of immune cells". Innate Immunity 22, n.º 5 (25 de maio de 2016): 353–62. http://dx.doi.org/10.1177/1753425916649676.
Texto completo da fonteWijesinghe, Gayan, Ayomi Dilhari, Buddhika Gayani, Nilwala Kottegoda, Lakshman Samaranayake e Manjula Weerasekera. "Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus". Medical Principles and Practice 28, n.º 1 (23 de outubro de 2018): 28–35. http://dx.doi.org/10.1159/000494757.
Texto completo da fonteGhani, M., e J. S. Soothill. "Ceftazidime, gentamicin, and rifampicin, in combination, kill biofilms of mucoidPseudomonas aeruginosa". Canadian Journal of Microbiology 43, n.º 11 (1 de novembro de 1997): 999–1004. http://dx.doi.org/10.1139/m97-144.
Texto completo da fonteKononenko, A. B., D. A. Bannikova, I. B. Pavlova, S. V. Britova e E. P. Savinova. "FORMATION OF BIOLOGICAL FILMS OF MICROORGANISMS ON VARIOUS SURFACES OF THE ENVIRONMENT". Problems of Veterinary Sanitation, Hygiene and Ecology 1, n.º 3 (2020): 333–40. http://dx.doi.org/10.36871/vet.san.hyg.ecol.202003008.
Texto completo da fonteGeoffroy, Valérie, Geneviève Payette, Florian Mauffrey, Livie Lestin, Philippe Constant e Richard Villemur. "Strain-level genetic diversity ofMethylophaga nitratireducenticrescensconfers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm". PeerJ 6 (23 de abril de 2018): e4679. http://dx.doi.org/10.7717/peerj.4679.
Texto completo da fonte