Literatura científica selecionada sobre o tema "Bioengineering"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Bioengineering".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Bioengineering"
David P Tokpah, Nusret Sinan Evcan, Doga Kavaz, Victor H Sumo, William Tokpah, Ismaila Ceesay, Ovia Osahon e Preye David Tantua. "The impact of philosophy on contemporary bioengineering". World Journal of Advanced Research and Reviews 13, n.º 3 (30 de março de 2022): 379–87. http://dx.doi.org/10.30574/wjarr.2022.13.3.0245.
Texto completo da fonteCotter, Paul D. "Bioengineering". Bioengineered 3, n.º 6 (24 de novembro de 2012): 313–19. http://dx.doi.org/10.4161/bioe.21601.
Texto completo da fonteBalfour, A. R. "Bioengineering". Implant Dentistry 6, n.º 1 (1997): 45–46. http://dx.doi.org/10.1097/00008505-199700610-00019.
Texto completo da fonteAndreassi, L. "Bioengineering". Journal of the European Academy of Dermatology and Venereology 5, n.º 1 (outubro de 1995): S1. http://dx.doi.org/10.1016/0926-9959(95)95738-m.
Texto completo da fonteSATO, Toshinori. "Glycolipid Bioengineering". Oleoscience 1, n.º 6 (2001): 627–34. http://dx.doi.org/10.5650/oleoscience.1.627.
Texto completo da fonteCaralt, Mireia, Enrique Velasco, Angel Lanas e Pedro M. Baptista. "Liver bioengineering". Organogenesis 10, n.º 2 (abril de 2014): 250–59. http://dx.doi.org/10.4161/org.29892.
Texto completo da fonteUriarte, Juan J., Franziska E. Uhl, Sara E. Rolandsson Enes, Robert A. Pouliot e Daniel J. Weiss. "Lung bioengineering". Current Opinion in Organ Transplantation 23, n.º 6 (dezembro de 2018): 673–78. http://dx.doi.org/10.1097/mot.0000000000000584.
Texto completo da fonteMethacanon, Pawadee, e John F. Kennedy. "Carbohydrate bioengineering". Carbohydrate Polymers 31, n.º 4 (dezembro de 1996): 291. http://dx.doi.org/10.1016/s0144-8617(97)89835-9.
Texto completo da fonteWarren, Tony. "Carbohydrate bioengineering". Trends in Biotechnology 13, n.º 11 (novembro de 1995): 447–50. http://dx.doi.org/10.1016/s0167-7799(00)89000-9.
Texto completo da fontePapatheofanis, Frank, e Paul Fagette. "Bioengineering history". Annals of Biomedical Engineering 25, n.º 1 (janeiro de 1997): S—7. http://dx.doi.org/10.1007/bf02647347.
Texto completo da fonteTeses / dissertações sobre o assunto "Bioengineering"
Al-Hassan, Reingard. "Biomaterialien - Biomedizin - Bioengineering". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1169038192157-41852.
Texto completo da fontePozuelo, Ruiz Marta. "Bioengineering single-protein wires". Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/462906.
Texto completo da fonteLa transferencia de electrones (ET) es uno de los procesos más importantes de la vida. La comprensión fundamental de los procesos de ET en biología es importante no sólo para comprender tales procesos naturales claves, sino también para avanzar en el diseño de interfaces biomolécula / electrodo para aplicaciones bioelectrónicas. En particular, se ha explotado la microscopía de efecto túnel con control electroquímico (EC-STM) para monitorizar in situ la constante de ET en función del potencial aplicado de las metaloproteínas. La Azurina de Pseudomonas aeruginosa es un modelo de proteína redox ampliamente estudiado, tanto en ‘bulk’ como a nivel de una sola proteina. Su estructura globular contiene un ion de cobre coordinado, que hace que la proteína sea capaz de intercambiar electrones cambiando su estado redox (Cu I/II). Este ion es el responsable de su rol como portador de electrones en la cadena respiratoria de las bacterias. En esta tesis, mostraremos nuestros avances en el diseño y caracterización de dispositivos de una sola proteína utilizando un modelo de metaloproteína Cu-Azurin. Hemos demostrado un comportamiento similar a un transistor en un hilo electroquímico de una sola proteína que funciona a muy bajos voltajes gracias a las propiedades redox de Cu-Azurin. Se demostró que la conductancia varía dependiendo del estado redox del centro de Cu, teniendo su valor máximo en el punto medio redox. También hemos analizado la formación espontánea de los contactos eléctricos de Azurin única a través de la corriente monitorizada cuando los dos electrodos ECSTM se colocaron a una distancia fija. Se observaron eventos discretos de conmutación para la conductancia, cuya frecuencia depende de las condiciones electroquímicas aplicadas y, por lo tanto, se atribuyeron unívocamente cambios discretos en el estado redox de la proteína atrapada. Con el fin de adaptar el comportamiento de transporte de carga de la unión uniproteica, hemos sintetizado varios mutantes de la misma proteína mediante bioingeniería en diferentes posiciones de la proteína. Nuestros resultados muestran que podemos cambiar racionalmente el mecanismo de transporte del dispositivo de una sola proteína mediante el estudio del efecto de la modificación de residuos específicos en las vías ET particular en el esqueleto de la proteína.
Bartelle, Benjamin B. "Bioengineering Novel Reporter Proteins". Thesis, New York University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3556976.
Texto completo da fonteVisualization of gene expression has led to a revolution in biology over the past two decades. Primarily this visualization has occurred using fluorescent proteins, like GFP, that can be directly visualized with microscopy. Fluorescence imaging is limited by depth of penetration when applied to living mice or humans however. For this, MRI, ultrasound and other modalities are under continual development for in vivo applications. Ideally, every in vivo imaging modality would have their own reporter genes, allowing for unconstrained genetic studies of structure and function. The current wealth of bioinformatics data presents a rich pallet of starting materials for bioengineering this next generation of reporter proteins.
This work utilized multiple approaches to creating reporters: cell labeling with, "Biotag" derived from a bacterial biotinylation enzyme and substrate; genetically controlled absorption of the MRI contrast agent Mn via the metal transport protein DMT1; and sequestration of Mn using the metal sensing transcription factor MntR. The reporter proteins were implemented in tissue culture and living mice to give a new view of gene expression in processes such as neural and vascular development. Moreover, the development process yielded new insights into the proteins themselves and the context in which they function. Each method has particular strengths and limitations but are, at present, the vanguard of in vivo molecular imaging.
Ip, Ling-yee Lyn, e 葉令怡. "Bioengineering and its applications". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B30425402.
Texto completo da fonteTrenner, Brian Robert. "Bioengineering for Land Stabilization". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253549875.
Texto completo da fonteGANAU, MARIO. "Bioengineering-enhanced neurosurgical solutions". Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266684.
Texto completo da fonteCrowther, Damian C. "The bioengineering of targeted serpins". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260598.
Texto completo da fonteBusuttil, Naudi Kurt. "Bone bioengineering for mandibular reconstruction". Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2419/.
Texto completo da fonteANGELATS, LOBO DAVID. "DEVELOPMENT OF ALTERNATIVE BIOENGINEERING STRATEGIES". Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/560219.
Texto completo da fonteConceptually, additive manufacturing allows rapid and precise manufacturing of complex parts. Additive manufacturing requires a previous design of the piece to be fabricated by computer-aided design (CAD) software. Due to the limitations of CAD software, especially on curves, some of the printed pieces require additional or post-processing treatments to achieve the desired morphology and structure. Additive manufacturing and three-dimensional (3D) printed were both previously established only in the engineering field. In the 21st century, the idea of using 3D printing technologies to develop 3D structures to support cell culture and mimic native cellular microenvironment, push forward a new field in research called Bioprinting. In bioprinting, several technologies can be used, being extrusion printing the more versatile and well established. 3D printers like the 3D-Bioplotter™ use a new method, direct bioprinting, which permits the printing of a structure integrated with cells that resembles more to the in vivo conditions. Likewise, different research areas can benefit from 3D Bioprinting, like the study of disorders or diseases such as cancer. By definition, cancer is a heterogenic disorder that causes 10 million deaths worldwide, being breast cancer the second cause of death among women in the USA and Europe. Triple-negative breast cancer (TNBC) has been described as the most aggressive subtype, but the lack of knowledge on how the tumoral process begins makes its study more interesting. Combining electrospun fibers and a triple-negative breast cancer cell line (MDA-MB-231) demonstrates the formation of tumor-like cell aggregates. It might be used in personalized medicine of cancer by selecting the best treatment for each patient in the future.
ANGELATS, LOBO DAVID. "DEVELOPMENT OF ALTERNATIVE BIOENGINEERING STRATEGIES". Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/560196.
Texto completo da fonteConceptually, additive manufacturing allows rapid and precise manufacturing of complex parts. Additive manufacturing requires a previous design of the piece to be fabricated by computer-aided design (CAD) software. Due to the limitations of CAD software, especially on curves, some of the printed pieces require additional or post-processing treatments to achieve the desired morphology and structure. Additive manufacturing and three-dimensional (3D) printed were both previously established only in the engineering field. In the 21st century, the idea of using 3D printing technologies to develop 3D structures to support cell culture and mimic native cellular microenvironment, push forward a new field in research called Bioprinting. In bioprinting, several technologies can be used, being extrusion printing the more versatile and well established. 3D printers like the 3D-Bioplotter™ use a new method, direct bioprinting, which permits the printing of a structure integrated with cells that resembles more to the in vivo conditions. Likewise, different research areas can benefit from 3D Bioprinting, like the study of disorders or diseases such as cancer. By definition, cancer is a heterogenic disorder that causes 10 million deaths worldwide, being breast cancer the second cause of death among women in the USA and Europe. Triple-negative breast cancer (TNBC) has been described as the most aggressive subtype, but the lack of knowledge on how the tumoral process begins makes its study more interesting. Combining electrospun fibers and a triple-negative breast cancer cell line (MDA-MB-231) demonstrates the formation of tumor-like cell aggregates. It might be used in personalized medicine of cancer by selecting the best treatment for each patient in the future.
Livros sobre o assunto "Bioengineering"
Pavlovic, Mirjana. Bioengineering. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10798-1.
Texto completo da fonteTeeri, Tuula T., B. Svensson, H. J. Gilbert e T. Feizi, eds. Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550323.
Texto completo da fonteWang, Lawrence K., Joo-Hwa Tay, Stephen Tiong Lee Tay e Yung-Tse Hung, eds. Environmental Bioengineering. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-031-1.
Texto completo da fonteVilladsen, John, ed. Fundamental Bioengineering. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527697441.
Texto completo da fonteYoshida, Toshiomi, ed. Applied Bioengineering. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527800599.
Texto completo da fonteSaterbak, Ann. Bioengineering fundamentals. Upper Saddle River, NJ: Pearson Prentice Hall, 2007.
Encontre o texto completo da fonteCosta, Jorge Alberto Vieira, Brian Gregory Mitchell e John Benemann, eds. Microalgal Bioengineering. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-61253-4.
Texto completo da fonteGoldsmith, Wendi, Donald Gray e John McCullah. Bioengineering Case Studies. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7996-3.
Texto completo da fonteVyas, Renu, ed. Advances in Bioengineering. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2063-1.
Texto completo da fonteAmerican Society of Mechanical Engineers. e ASME International Mechanical Engineering Congress and Exposition (1995 : San Francisco, California), eds. Advances in Bioengineering. New York: American Society of Mechanical Engineers, 1995.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Bioengineering"
Brey, Philip, e Saskia Nagel. "Bioengineering". In Encyclopedia of Global Bioethics, 280–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-09483-0_43.
Texto completo da fonteBrey, Philip, e Saskia Nagel. "Bioengineering". In Encyclopedia of Global Bioethics, 1–12. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05544-2_43-1.
Texto completo da fonteItkin, Maxim, e Asaph Aharoni. "Bioengineering". In Plant-derived Natural Products, 435–73. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85498-4_20.
Texto completo da fonteten Have, Henk, e Maria do Céu Patrão Neves. "Bioengineering". In Dictionary of Global Bioethics, 163. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54161-3_78.
Texto completo da fonteEnzo, Berardesca, e Cameli Norma. "Skin Bioengineering". In Kanerva’s Occupational Dermatology, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-40221-5_88-2.
Texto completo da fontePiérard, Gérald E., Philippe Paquet, Lorine Preudhomme, Fanchon Noël e Pascale Quatresooz. "Skin Bioengineering". In Kanerva's Occupational Dermatology, 991–1001. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02035-3_88.
Texto completo da fonteAnitua, Eduardo, e Gorka Orive. "Bioengineering Concepts". In Implant Site Development, 419–28. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119136194.ch23.
Texto completo da fonteChandrasoma, Shahin, e Roger De Filippo. "Tissue Bioengineering". In New Technologies in Urology, 147–54. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-178-1_17.
Texto completo da fonteLinsenmeier, Robert A., e John B. Troy. "Retinal Bioengineering". In Neural Engineering, 581–637. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43395-6_21.
Texto completo da fonteBerardesca, Enzo, e Cameli Norma. "Skin Bioengineering". In Kanerva’s Occupational Dermatology, 1387–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68617-2_88.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Bioengineering"
"Bioengineering and Biorobotics". In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2019. http://dx.doi.org/10.1109/ukrcon.2019.8880021.
Texto completo da fonteValentinuzzi, M. E. "Bioengineering education in Argentina". In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95229.
Texto completo da fonte"The bioengineering week 2012". In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2012). IEEE, 2012. http://dx.doi.org/10.1109/biorob.2012.6290957.
Texto completo da fonteNovikov, M. A., A. F. Bystritskaya, K. N. Eskov, V. K. Vasilyiev, A. G. Vinokhodova e Colin Davies. "HOMEOSTAT - A Bioengineering System". In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932068.
Texto completo da fontePyatibratov, M. G., A. S. Syutkin, S. N. Beznosov, A. V. Galeva e S. Yu Shchyogolev. "Bioengineering of archaeal flagella". In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.203.
Texto completo da fonteCernova, Irina. "Bioengineering complexes for ecologization of agricultural production". In Scientific International Symposium "Plant Protection – Achievements and Perspectives". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2023. http://dx.doi.org/10.53040/ppap2023.18.
Texto completo da fonteKvet, Michal, Monika Vajsova, Karol Matiasko e Marek Kvet. "Data management in bioengineering systems". In 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP). IEEE, 2015. http://dx.doi.org/10.1109/wisp.2015.7139179.
Texto completo da fonteWood, Sally L., e Parvati Dev. "Visualization tools for bioengineering education". In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761323.
Texto completo da fonteWood. "Visualization Tools For Bioengineering Education". In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.594665.
Texto completo da fonteLee, Luke. "Micro- and Nanotechnology for Bioengineering". In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.ftuj3.
Texto completo da fonteRelatórios de organizações sobre o assunto "Bioengineering"
Eddington, David, L,Richard Magin, John Hetling e Michael Cho. Integrative Bioengineering Institute. Office of Scientific and Technical Information (OSTI), janeiro de 2009. http://dx.doi.org/10.2172/945219.
Texto completo da fonteGuy, Richard H. Skin Bioengineering: Noninvasive Transdermal Monitoring. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2004. http://dx.doi.org/10.21236/ada421355.
Texto completo da fonteAllen, Hollis H., e James R. Leech. Bioengineering for Streambank Erosion Control. Report 1 - Guidelines. Fort Belvoir, VA: Defense Technical Information Center, abril de 1997. http://dx.doi.org/10.21236/ada326294.
Texto completo da fonteFurquim, Camila Pinheiro, Rose Yakushijin Kumagai, Willy Bustillos-Torrez, Caio Tanaka, Jonathan Meza-Mauricio, Belen Retamal-Valdes e Jamil Shibli. Dental regeneration through bioengineering: a systematic scoping review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, fevereiro de 2021. http://dx.doi.org/10.37766/inplasy2021.2.0042.
Texto completo da fonteHarding, Thomas H. Contributive Research in Aviation Medicine, Bioengineering, Human Performance Analytic and Modeling Systems. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2002. http://dx.doi.org/10.21236/ada414143.
Texto completo da fonteEwing, R. D. Bioengineering Evaluation of Retrofitted Oxygen Supplementation in Surface Water Project ; Final Report 2000. Office of Scientific and Technical Information (OSTI), junho de 2000. http://dx.doi.org/10.2172/777029.
Texto completo da fonteWendt, Cathy J., e Hollie H. Allen. Archaeological Site and Reservoir Shoreline Stabilization Using Wetland Plants and Bioengineering, Rice Reservoir, Wisconsin. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2001. http://dx.doi.org/10.21236/ada395586.
Texto completo da fonteAnderson, Olin, e Gad Galili. Development of Assay Systems for Bioengineering Proteins that Affect Dough Quality and Wheat Utilization. United States Department of Agriculture, 1994. http://dx.doi.org/10.32747/1994.7568781.bard.
Texto completo da fonteKidambi, Srivatsan. Bioengineering Multifunctional Quantum Dot-Polypeptide Assemblies and Immunoconjugates for the Ablation of Advanced Prostate Cancer Disease. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2008. http://dx.doi.org/10.21236/ada502509.
Texto completo da fonteTabita, F. Robert. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms. Office of Scientific and Technical Information (OSTI), julho de 2013. http://dx.doi.org/10.2172/1088853.
Texto completo da fonte