Literatura científica selecionada sobre o tema "Biocompatibility"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Biocompatibility".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Biocompatibility"
Teichmann, Klaus D. "Biocompatibility". Journal of Cataract & Refractive Surgery 29, n.º 8 (agosto de 2003): 1470. http://dx.doi.org/10.1016/s0886-3350(03)00602-3.
Texto completo da fonteHester, Doug. "Biocompatibility". Canadian Medical Association Journal 187, n.º 6 (17 de fevereiro de 2015): 441. http://dx.doi.org/10.1503/cmaj.141214.
Texto completo da fonteDenes, Eric, Guislaine Barrière, Evelyne Poli e Guillaume Lévêque. "Alumina Biocompatibility". Journal of Long-Term Effects of Medical Implants 28, n.º 1 (2018): 9–13. http://dx.doi.org/10.1615/jlongtermeffmedimplants.2018025635.
Texto completo da fonteBloomenstein, Marc R., Ian B. Gaddie, Paul Karpecki e Scot Morris. "Understanding Biocompatibility". Cornea 31, n.º 12 (dezembro de 2012): 1507. http://dx.doi.org/10.1097/ico.0b013e31825e83de.
Texto completo da fonteRatner, Buddy D. "The Biocompatibility Manifesto: Biocompatibility for the Twenty-first Century". Journal of Cardiovascular Translational Research 4, n.º 5 (28 de junho de 2011): 523–27. http://dx.doi.org/10.1007/s12265-011-9287-x.
Texto completo da fonteMurabayashi, Shun, e Yukihiko Nose. "Biocompatibility: Bioengineering aspects". Bio-Medical Materials and Engineering 23, n.º 1-2 (2013): 129–42. http://dx.doi.org/10.3233/bme-120738.
Texto completo da fonteRyhänen, J. "Biocompatibility of Nitinol". Minimally Invasive Therapy & Allied Technologies 9, n.º 2 (janeiro de 2000): 99–105. http://dx.doi.org/10.3109/13645700009063056.
Texto completo da fonteRigby, G., e P. Vadgama. "Highlight. Materials biocompatibility". Analytical Communications 33, n.º 11 (1996): 19H. http://dx.doi.org/10.1039/ac996330019h.
Texto completo da fonteRubin, Paul G. "Biocompatibility and sensitivity". Journal of the American Dental Association 117, n.º 2 (agosto de 1988): 288. http://dx.doi.org/10.14219/jada.archive.1988.0184.
Texto completo da fonteLemperle, Gottfried, e Peter Kind. "BIOCOMPATIBILITY OF ARTECOLL". Plastic and Reconstructive Surgery 103, n.º 1 (janeiro de 1999): 338–39. http://dx.doi.org/10.1097/00006534-199901000-00080.
Texto completo da fonteTeses / dissertações sobre o assunto "Biocompatibility"
Wang, Haibo. "Hydroxyapatite degradation and biocompatibility". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1087238429.
Texto completo da fonteTitle from first page of PDF file. Document formatted into pages; contains xiv, 190 p.; also includes graphics. Includes bibliographical references (p. 166-190).
Roka, Eszter. "Biocompatibility evaluation and synthesis of macrocyclic compounds". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1027/document.
Texto completo da fonteThe low solubility of drug candidates cause a major problem in pharmaceutical formulations, as the aqueous solubility is an indispensable criterion for appropriate bioavailability. Macrocyclic compounds possess a relatively hydrophobic cavity, which is suitable for guest molecule inclusion. Cyclodextrins and calixarenes are widely studied organic host-compounds, and CDs have already been used as pharmaceutical excipients for solubility enhancement. The macrocycles’ chemical structure allows their versatile modification, which eventuates changes not only in physicochemical characteristics, but in their effects on living organisms, as well. Thus, the biocompatibility evaluation of the derivatives is fundamental. Owing to the already performed assessment of numerous β-CD derivatives’ biocompatibility, the aim of this research was to extend these experiments to commercially available α-CDs. They have been used less frequently, however several derivatives, which have not been tested yet in vitro, have the possibility of future pharmaceutical use. Their importance is also certified by their benefits in nanoparticle formation. We have been interested in concrete structure-toxicity correlations, thus alkyl ether α-CD derivatives were synthetized bearing increasing length alkyl chains, in different positions. Para-sulphonato-calix[n]-arenes have already been widely examined due to their efficient drug complexation and versatile biological activity, however, their effects on paracellular transport mechanism have not been evaluated until now.The cell viability and hemolysis tests have allowed us to rank the α-CDs and to choose the safest derivatives, also to compare their toxic effects in different systems. The comparison of α- and β-CDs bearing the same chemical modifications highlighted the importance of the number of building units. Important information has been evaluated regarding the connection between the cytotoxic effect and the number of free hydroxyl groups. Derivatives with long alkyl chains possess low solubility, which led us towards further chemical modifications. Sulfonation seemed to have beneficial impact on the biocompatibility. Sulfonation also improved the solubility of calixarenes. C4S and C8S proved their positive effect on paracellular absorption in a non-toxic concentration range, however C6S had no similar effect, thus their behaviour in in vitro absorption model system arose forward-looking questions.Our research concludes, that the structural changes on the macrocyclic rings may have major impact on the biocompatibility. As the modification possibilities are practically unlimited, the evaluation of structure and activity cannot be avoided, facilitating the safest choice for further pharmaceutical use
A gyógyszerhatóanyagok rossz vízoldékonysága nagy kihívást jelent formulálásuk során, ugyanis a vízoldékonyság elengedhetetlen feltétele a megfelelő biohasznosulásnak. A makrociklusos vegyületek belső ürege viszonylag hidrofób, ez alkalmassá teszi őket vendégmolekulákkal való komplexképzésre. A ciklodextrinek és kalixarének széles körben tanulmányozott vegyületek, egyes CD-ek bejegyzett oldékonyságnövelő segédanyagok. A makrociklusok felépítése számos kémiai módosításra ad lehetőséget, amelyek nem csupán a fiziko-kémiai tulajdonságok változását eredményezik, hanem az élő organizmusokra kifejtett hatásokat is módosítják. Ezen származékok biokompatibilitás vizsgálata tehát elengedhetetlen. Számos β-CD származék biokompatibilitása ismert már, így kutatásunk célul tűzte ki ezen vizsgálatok α-CD-ekre történő kiterjesztését. Az α-CD-ek alkalmazása ritkább, azonban vannak származékok, amelyek in vitro vizsgálata még nem történt meg, de jelentőségük a nanopartikulum-képzésben már igazolt. A szerkezet-toxicitás összefüggések feltárása érdekében olyan alkil-éter CD származékokat szintetizáltunk, amelyek növekvő szénatomszámú alkil-csoportokkal rendelkeznek, eltérő pozíciókban. A para-szulfonáto-kalix[n]aréneket hatóanyag-komplexáló tulajdonságuk, valamint sokoldalú biológiai aktivitásuk miatt széles körben tanulmányozták már, azonban a paracelluláris anyagtranszportra gyakorolt hatásuk ezidáig még nem volt ismert. A sejtéletképességi és hemolízis vizsgálatok hozzásegítettek az egyes α-CD-ek rangsorolásához, továbbá a vegyületek különböző rendszerekben mért toxikussága is összevethetővé vált. A megegyező kémiai módosításokon átesett α- és β-CD-ek biokompatibilitása rávilágított a CD-gyűrű mértének jelentőségére. Egyértelmű összefüggést fedeztünk fel a toxicitás és a szabad hidroxil-csoportok száma között. A hosszú alkil-csoporttal rendelkező CD-ek rossz oldékonysága további kémiai módosításokat tett szükségszerűvé; a szulfát csoportok jelenléte jótékony hatással volt az oldhatóságra, és a citotoxicitásra is. A szulfatálás a kalixarének oldékonyságát is növelte. A C4S és C8S vegyületek növelték a paracelluláris felszívódás mértékét szubtoxikus koncentrációban, azonban a C6S nem mutatott hasonló hatást. Ezen eredmények további kérdéseket vetnek fel a pontos hatásmechanizmusról. Eredményeink rávilágítanak a makrociklusok szerkezetének és biokompatibilitásának összefüggéseire, valamint ezen ismeretek fontosságára annak érdekében, hogy minden formulációban a legbiztonságosabb segédanyagok legyenek alkalmazhatóak
Sun, Tao, e 孙韬. "Surface modification of titanium metal for medical applications". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45457694.
Texto completo da fonteReverte, Maëva. "Etude de la biocompatibilité d acides nucléiques modifiés par des acides boroniques : développement de nouveaux outils de diagnostic". Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT236.
Texto completo da fonteThe modification of oligonucleotides is an attractive field of organic chemistry. Many studies have focused on the generation of artificial internucleoside linkages for therapeutic, diagnostic or for applications in prebiotic chemistry. This thesis manuscript reports the synthesis and study of nucleic acids biocompatibility modified at their 5 'ends by a boronic acid function. The behavior of boronic oligomers was assessed in the presence of different classes of enzymes, such as ligases, polymerases or phosphodiesterases. The biocompatibility results obtained in the presence of these enzymes allowed us to use these modified nucleic acids as real diagnostic tools to achieve mutation point detection or detection of peroxynitrite in-cellulo
Le, Coadou Cécile. "Caractérisation de films de zircone yttriée et développement d’un procédé de brasage avec du TA6V pour des applications biomédicales". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI041/document.
Texto completo da fonteNeurodegenerative diseases are increasingly present in our society but they are also better known and treated. For example, deep brain stimulation is nowadays used to treat diseases such as Parkinson disease. For this purpose, a pacemaker-like device localized in the infraclavicular region is commonly used to deliver electrical pulses in concerned area of the brain thanks to electrodes. In order to avoid some complications, an ultrathin housing was designed. It could be directly implanted under the scalp, close to the area to be treated. Materials of the housing have to be display some features. TA6V, yttria-stabilized zirconia sheets and a hermetic brazing with a Ti2Ni joint were selected to develop this housing.Yttria-stabilized zirconia sheets have remarkable properties but they undergo a degradation caused by hydrothermal aging. An accelerated aging study was done on pristine sheets but also under near-reality conditions. The observed aging is sufficiently limited to consider an in vivo application, subject to one reservation for the under-stoichiometric zirconia. Finally, the aging profile and the propagation rate were specified.The TA6V-zirconia joining was obtained by an in situ reactive brazing, thanks to a filler metal in pure nickel and the formation of a Ti2Ni joint. Several phenomena occur in the TA6V-Ni-ZrO2 system, which were separately studied: (solid and liquid) diffusion, formation and growth of intermetallic compounds and redox reactions. The intermetallic compounds growth from the TA6V-Ni couple was studied in detail. Thanks to all of the results, a metal-ceramic brazing process for ultrathin materials was identified and successfully achieved on our system
Bentley, P. K. "Biocompatibility assessment of novel perfluorochemical emulsions". Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293632.
Texto completo da fonteCampoccia, Davide. "Aspects of biocompatibility of hyaluronan derivatives". Thesis, University of Liverpool, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295835.
Texto completo da fonteBlanquer, Jerez Andreu. "Biocompatibility of new biomaterials for orthopaedic applications". Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/386500.
Texto completo da fonteThe use of biocompatible materials has attained an increasing importance for medical surgery and orthopaedics due to population aging. Metallic alloys currently used in bone implants have physical and mechanical properties different from those of the bone, which increases the probability of implant loosening. For this reason, new metallic alloys with better properties are being developed. In this regard, the present thesis aims to analyse the biocompatibility of new biomaterials for orthopaedic applications. First, we demonstrated the biocompatibility of TiZrCuPd bulk metallic glass in terms of cytotoxicity, and osteoblast adhesion and differentiation. Second, we assessed the effect of surface modification of TiZrCuPd and Ti-6Al-4V alloys by electrochemical anodization and physical modification on osteoblast behaviour. Differences in topography did not cause changes on osteoblasts adhesion, proliferation and differentiation. Third, we demonstrated that TiZrPdSi and TiZrPdSiNb alloys are also biocompatible and enhance osteoblasts adhesion, spreading, proliferation and differentiation. Fourth, we evaluated the electrostimulation effect of two new ZnO piezoelectric nanogenerators using two cell lines involved in bone regeneration (osteoblasts and macrophages). We observed that both nanogenerators are biocompatible and that their interaction with cells produces a local electric field that stimulate macrophages motility and the increase in intracellular Ca2+ concentration in osteoblasts. Thus, these new smart materials have interesting properties for their use in biomedical devices. Collectively, the results obtained in our studies contribute to the progress in the development of better materials for bone repair and regeneration.
Zeng, Muling. "Bacterial cellulose: fabrication, characterization and biocompatibility studies". Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284146.
Texto completo da fonteIn March 2011, I started the application of a scholarship from CSC (Chinese Scholarship Council), which cooperated with the Universitat Autònoma de Barcelona (UAB). After about half year, I secured the scholarship and began my doctoral thesis under the supervision of Dr. Anna Roig and Dr. Anna Laromaine. My project assignment was on bacterial cellulose: fabrication, characterization and biocompatibility studies. Bacterial cellulose is a renewable polysaccharide, which is produced by some types of bacteria in nature. It presents remarkable chemical and physical properties, including high chemical purity and crystallinity, nano-scale fibre network, porosity, high water absorption capacity and mechanical strength. Bacterial cellulose is being used for a wide variety of commercial applications, for example textiles, cosmetics, food products and other technical areas. Furthermore, bacterial cellulose is also biocompatible with excellent biological affinity and biodegradability, which is drawing immense attention from the bio and medical area researchers. The objective of my thesis was to learn how to produce bacterial cellulose films and find strategies to control their properties. A second objective was to developed methods to fabricate nanocomposites based on bacterial cellulose. The final objective was related to prove the biocompatibility of the in-house produced bacterial cellulose films and to be able to use them as three-dimensional scaffolds for cell in-growth. In this way setting up a platform that will allow us to study the interaction of cells and nanoparticles in a realistic 3D environment. During the first year, a lab set-up was successfully built to produce bacterial cellulose from two bacterial strains and three methods of drying were accessed to dry the thin films; at room temperature, freeze drying and supercritical drying. Moreover, the full characterization of bacterial cellulose films was accomplished: their porosity, transparency, water absorption capacity and mechanical properties were tuned by selecting the bacterial strain and the drying method. In the second year, bacterial cellulose composited with nanoparticles as novel functional cellulose materials were synthesized by microwave-assisted method. This method is efficient and fast to form a homogenous conformal and controllable coating of nanoparticles on the bacterial cellulose films. By drying the cellulose films using different routes, the final amount of the nanoparticles content in the composites can be controlled. Furthermore, those films were patterned with hydrophobic/hydrophilic domains and selectively anchored nanoparticles to create more complex and functional cellulose composites. During the last year, an investigation of the biocompatibility of the bacterial cellulose films in vitro was performed. Although bacterial cellulose is generally considered non-cytotoxic material, its biocompatibility as a major requirement for the use in biological and medical applications has not been fully evaluated. Furthermore, an improved 3D bacterial cellulose scaffold was fabricated. The thesis is organized into six chapters. Chapter 1 provides an introduction to bacterial cellulose. Chapter 2 describes a detailed description of the fabrication of bacterial cellulose films (BCFs). Chapter 3 focuses on the synthesis of functional bacterial cellulose composites incorporating nanoparticles. Chapter 4 presents the studies of bacterial cellulose biocompatibility as 2D and 3D scaffold for cell studies in vitro. Chapter 5 lists the main conclusions derived from the present thesis and some suggestions for the future work. Chapter 6 gathers information about the author and the publications during the Ph.D. studies.
Somayajula, Dilip Ayyala. "Biocompatibility of osteoblast cells on titanium implants". Cleveland, Ohio : Cleveland State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1207322725.
Texto completo da fonteAbstract. Title from PDF t.p. (viewed on May 8, 2008). Includes bibliographical references (p. 72-76). Available online via the OhioLINK ETD Center. Also available in print.
Livros sobre o assunto "Biocompatibility"
Silver, Frederick H., e David L. Christiansen. Biomaterials Science and Biocompatibility. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0557-9.
Texto completo da fonteF, Williams D., ed. Techniques of biocompatibility testing. Boca Raton, Fla: CRC Press, 1986.
Encontre o texto completo da fonteDorthe, Arenholt-Bindslev, e SpringerLink (Online service), eds. Biocompatibility of Dental Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Encontre o texto completo da fonteF, Williams D., ed. Biocompatibility of tissue analogs. Boca Raton, Fla: CRC Press, 1985.
Encontre o texto completo da fonteHildebrand, Hartmut F., e Maxime Champy, eds. Biocompatibility of Co-Cr-Ni Alloys. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0757-0.
Texto completo da fonteNATO Advanced Research Workshop on Biological Incidences of Co-Cr-Ni Alloys Used in Orthopaedic Surgery and Stomatology (1985 Bischenberg, France). Biocompatibility of Co-Cr-Ni alloys. New York: Plenum Press, 1988.
Encontre o texto completo da fonteJonathan, Black. Biological performance of materials: Fundamentals of biocompatibility. 2a ed. New York: Dekker, 1992.
Encontre o texto completo da fonteSilver, Frederick H. Biocompatibility: Interactions of biological and implantable materials. New York, N.Y: VCH, 1989.
Encontre o texto completo da fonteSeaman, Philip John. Investigation into the biocompatibility of modified synthetic polymer surfaces. Salford: University of Salford, 1988.
Encontre o texto completo da fonteVadiraj, Aravind. Surface modified biochemical titanium alloys. New York: Nova Science Publishers, 2010.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Biocompatibility"
Man, N. K., J. Zingraff e P. Jungers. "Biocompatibility". In Long-Term Hemodialysis, 42–48. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0027-4_5.
Texto completo da fonteLeitgeb, Norbert. "Biocompatibility". In Safety of Electromedical Devices, 77–79. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99683-6_4.
Texto completo da fonteHasirci, Vasif, e Nesrin Hasirci. "Biocompatibility". In Fundamentals of Biomaterials, 159–72. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8856-3_11.
Texto completo da fonteGooch, Jan W. "Biocompatibility". In Encyclopedic Dictionary of Polymers, 80. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1312.
Texto completo da fonteReyes Rojas, Armando, Alfredo Aguilar Elguezabal, Alessandro Alan Porporati, Miguel Bocanegra Bernal e Hilda Esperanza Esparza Ponce. "Biocompatibility". In Synthesis Lectures on Biomedical Engineering, 17–21. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25420-8_3.
Texto completo da fonteHasirci, Vasif, e Nesrin Hasirci. "Biocompatibility". In Fundamentals of Biomaterials, 191–203. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-54046-2_12.
Texto completo da fontePeters, Kirsten, Ronald E. Unger e C. James Kirkpatrick. "Biocompatibility Testing". In Biomedical Materials, 423–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_13.
Texto completo da fontede Vos, Paul, e Reinout van Schilfgaarde. "Biocompatibility Issues". In Cell Encapsulation Technology and Therapeutics, 63–75. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1586-8_6.
Texto completo da fonteWalton, Daniel F., e Alfred K. Cheung. "Membrane Biocompatibility". In Suki and Massry’s THERAPY OF RENAL DISEASES AND RELATED DISORDERS, 1029–42. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6632-5_61.
Texto completo da fonteCheung, Alfred K. "Membrane Biocompatibility". In Therapy of Renal Diseases and Related Disorders, 813–39. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-0689-4_53.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Biocompatibility"
Pecheva, E., P. Laquerriere, Sylvie Bouthors, D. Fingarova, L. Pramatarova, T. Hikov, D. Dimova-Malinovska, P. Montgomery, Angelos Angelopoulos e Takis Fildisis. "Polycrystalline Silicon: a Biocompatibility Assay". In ORGANIZED BY THE HELLENIC PHYSICAL SOCIETY WITH THE COOPERATION OF THE PHYSICS DEPARTMENTS OF GREEK UNIVERSITIES: 7th International Conference of the Balkan Physical Union. AIP, 2010. http://dx.doi.org/10.1063/1.3322581.
Texto completo da fontePiña, C., K. Torres, B. Palma, G. Torres-Villaseñor, N. Perez, A. Olivera, P. Izquierdo e J. Luna del Villar. "Biocompatibility test of Zinalco alloy". In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51149.
Texto completo da fonteParel, Jean-Marie A., Stefan Kaminski, Viviana Fernandez, E. Alfonso, Peggy Lamar, Emmanuel Lacombe, Bernard Duchesne, Sander Dubovy, Fabrice Manns e Pascal O. Rol. "Synthetic cornea: biocompatibility and optics". In International Symposium on Biomedical Optics, editado por Fabrice Manns, Per G. Soederberg e Arthur Ho. SPIE, 2002. http://dx.doi.org/10.1117/12.470584.
Texto completo da fonteSato, Yoshinori, Makoto Ohtsubo, Balachandran Jeyadevan, Kazuyuki Tohji, Ken-ichi Motomiya, Rikizo Hatakeyama, Go Yamamoto et al. "Biocompatibility of carbon nanotube disk". In Optics East, editado por M. Saif Islam e Achyut K. Dutta. SPIE, 2004. http://dx.doi.org/10.1117/12.579687.
Texto completo da fonteBuzdugan, Mircea Ion, Horia Balan e Dorin Muresan. "Electromagnetic compatibility versus electromagnetic biocompatibility". In 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC 2010). IEEE, 2010. http://dx.doi.org/10.1109/epepemc.2010.5606920.
Texto completo da fonteRivolta, I., B. Lettiero, A. Panariti, R. D’Amato, V. Maurice, M. Falconieri, N. Herlein, E. Borsella, G. Miserocchi e Elisabetta Borsella. "Si-based Nanoparticles: a biocompatibility study". In BONSAI PROJECT SYMPOSIUM: BREAKTHROUGHS IN NANOPARTICLES FOR BIO-IMAGING. AIP, 2010. http://dx.doi.org/10.1063/1.3505090.
Texto completo da fontePark, Jaebum, e Mike McShane. "Nanofilm coatings for transport control and biocompatibility". In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716501.
Texto completo da fonteDoursounian, L., J. Honiger, J. C. Bonnet, M. Jagueux e A. Apoil. "Magnetic articular prosthesis: functional study and biocompatibility". In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94964.
Texto completo da fonteAugustynek, Martin, Josef Cihak, Dominik Vilimek, Jan Kubicek, Marek Penhaker e Klara Fiedorova. "Biocompatibility of Medical Devices and Their Risks". In 2019 8th European Workshop on Visual Information Processing (EUVIP). IEEE, 2019. http://dx.doi.org/10.1109/euvip47703.2019.8946251.
Texto completo da fonteBattistoni, Silvia, Victor Erokhin, Nicola Cornella, Tatiana Berzina, Paolo Macchi e Salvatore Iannotta. "Analysis of PANI biocompatibility with neuronal cells". In 2015 International Conference on Memristive Systems (MEMRISYS). IEEE, 2015. http://dx.doi.org/10.1109/memrisys.2015.7378403.
Texto completo da fonteRelatórios de organizações sobre o assunto "Biocompatibility"
Tomova, Zlatina, Angelina Vlahova, Christo Kissov, Rada Kazakova e Dimitar D. Radev. Corrosion Resistance and Biocompatibility of Multicomponent Ni- and Co ‑ Base Dental Alloys Obtained by Methods of Powder Metallurgy. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, julho de 2018. http://dx.doi.org/10.7546/crabs.2018.07.05.
Texto completo da fonteRaychev, Nikolay. Can human thoughts be encoded, decoded and manipulated to achieve symbiosis of the brain and the machine. Web of Open Science, outubro de 2020. http://dx.doi.org/10.37686/nsrl.v1i2.76.
Texto completo da fonte