Artigos de revistas sobre o tema "Bio-Sourced and biodegradable polyesters"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Bio-Sourced and biodegradable polyesters".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Contreras Ramírez, Jesús Miguel, Dimas Alejandro Medina e Meribary Monsalve. "Poliésteres como Biomateriales. Una Revisión". Revista Bases de la Ciencia. e-ISSN 2588-0764 6, n.º 2 (30 de agosto de 2021): 113. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.3156.
Texto completo da fonteLang, Kening, Regina J. Sánchez-Leija, Richard A. Gross e Robert J. Linhardt. "Review on the Impact of Polyols on the Properties of Bio-Based Polyesters". Polymers 12, n.º 12 (12 de dezembro de 2020): 2969. http://dx.doi.org/10.3390/polym12122969.
Texto completo da fonteKopitzky, Rodion. "Poly(lactic acid)–Poly(butylene succinate)–Sugar Beet Pulp Composites; Part II: Water Absorption Characteristics with Fine and Coarse Sugar Beet Pulp Particles; A Phenomenological Investigation". Polymers 13, n.º 20 (15 de outubro de 2021): 3558. http://dx.doi.org/10.3390/polym13203558.
Texto completo da fonteBerketova, L., e V. Polkovnikova. "On the Eco-, Edible and Fast-decomposing Packaging in the Food Industry". Bulletin of Science and Practice 6, n.º 10 (15 de outubro de 2020): 234–43. http://dx.doi.org/10.33619/2414-2948/59/23.
Texto completo da fonteGonzález-Arancibia, Fernanda, Maribel Mamani, Cristian Valdés, Caterina Contreras-Matté, Eric Pérez, Javier Aguilera, Victoria Rojas, Howard Ramirez-Malule e Rodrigo Andler. "Biopolymers as Sustainable and Active Packaging Materials: Fundamentals and Mechanisms of Antifungal Activities". Biomolecules 14, n.º 10 (27 de setembro de 2024): 1224. http://dx.doi.org/10.3390/biom14101224.
Texto completo da fonteKuru, Zehra, e Mehmet Arif Kaya. "Poly(Lactic Acid) / Polyester Blends: Review of Current and Future Applications". European Journal of Research and Development 3, n.º 1 (28 de março de 2023): 175–99. http://dx.doi.org/10.56038/ejrnd.v3i1.259.
Texto completo da fonteTodea, Anamaria, Emese Biro, Valentin Badea, Cristina Paul, Adinela Cimporescu, Lajos Nagy, Sándor Kéki, Geza Bandur, Carmen Boeriu e Francisc Péter. "Optimization of enzymatic ring-opening copolymerizations involving δ-gluconolactone as monomer by experimental design". Pure and Applied Chemistry 86, n.º 11 (1 de novembro de 2014): 1781–92. http://dx.doi.org/10.1515/pac-2014-0717.
Texto completo da fonteMontava-Jorda, Sergi, Diego Lascano, Luis Quiles-Carrillo, Nestor Montanes, Teodomiro Boronat, Antonio Vicente Martinez-Sanz, Santiago Ferrandiz-Bou e Sergio Torres-Giner. "Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate)". Polymers 12, n.º 1 (9 de janeiro de 2020): 174. http://dx.doi.org/10.3390/polym12010174.
Texto completo da fonteLucas, Francisco W. S., Yuval Fishler e Adam Holewinski. "Tuning the selectivity of electrochemical levulinic acid reduction to 4-hydroxyvaleric acid: a monomer for biocompatible and biodegradable plastics". Green Chemistry 23, n.º 22 (2021): 9154–64. http://dx.doi.org/10.1039/d1gc02826j.
Texto completo da fonteDong, Weifu, Huiling Li, Mingqing Chen, Zhongbin Ni, Jishi Zhao, Haipeng Yang e Pieter Gijsman. "Biodegradable bio-based polyesters with controllable photo-crosslinkability, thermal and hydrolytic stability". Journal of Polymer Research 18, n.º 6 (11 de novembro de 2010): 1239–47. http://dx.doi.org/10.1007/s10965-010-9526-x.
Texto completo da fonteBi, Siwen, Vincenzo Barinelli e Margaret J. Sobkowicz. "Degradable Controlled Release Fertilizer Composite Prepared via Extrusion: Fabrication, Characterization, and Release Mechanisms". Polymers 12, n.º 2 (2 de fevereiro de 2020): 301. http://dx.doi.org/10.3390/polym12020301.
Texto completo da fonteGkountela, Christina I., e Stamatina N. Vouyiouka. "Enzymatic Polymerization as a Green Approach to Synthesizing Bio-Based Polyesters". Macromol 2, n.º 1 (24 de janeiro de 2022): 30–57. http://dx.doi.org/10.3390/macromol2010003.
Texto completo da fonteGovindan, Srinivasan, Maximiano Ramos e Ahmed M. Al-Jumaily. "A Review of Biodegradable Polymer Blends and Polymer Composite for Flexible Food Packaging Application". Materials Science Forum 1094 (27 de julho de 2023): 51–60. http://dx.doi.org/10.4028/p-dc7wkh.
Texto completo da fonteRosato, Antonella, Angela Romano, Grazia Totaro, Annamaria Celli, Fabio Fava, Giulio Zanaroli e Laura Sisti. "Enzymatic Degradation of the Most Common Aliphatic Bio-Polyesters and Evaluation of the Mechanisms Involved: An Extended Study". Polymers 14, n.º 9 (30 de abril de 2022): 1850. http://dx.doi.org/10.3390/polym14091850.
Texto completo da fonteDavid, Grégoire, Nathalie Gontard e Hélène Angellier-Coussy. "Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification". Polymers 11, n.º 2 (24 de janeiro de 2019): 200. http://dx.doi.org/10.3390/polym11020200.
Texto completo da fonteJacquel, Nicolas, René Saint-Loup, Jean-Pierre Pascault, Alain Rousseau e Françoise Fenouillot. "Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications". Polymer 59 (fevereiro de 2015): 234–42. http://dx.doi.org/10.1016/j.polymer.2014.12.021.
Texto completo da fonteHajdek, Krunoslav, Bozo Smoljan, Bojan Sarkanj e Wojciech Sitek. "PROCESSING TECHNOLOGIES, PROPERTIES AND APPLICATION OF POLY (LACTIC ACID) (PLA)". International Journal of Modern Manufacturing Technologies 15, n.º 1 (20 de junho de 2023): 87–97. http://dx.doi.org/10.54684/ijmmt.2023.15.1.87.
Texto completo da fonteNiu, Ruixue, Zhening Zheng, Xuedong Lv, Benqiao He, Sheng Chen, Jiaying Zhang, Yanhong Ji, Yi Liu e Liuchun Zheng. "Long-Chain Branched Bio-Based Poly(butylene dodecanedioate) Copolyester Using Pentaerythritol as Branching Agent: Synthesis, Thermo-Mechanical, and Rheological Properties". Polymers 15, n.º 15 (26 de julho de 2023): 3168. http://dx.doi.org/10.3390/polym15153168.
Texto completo da fonteLajarrige, Anaïs, Nathalie Gontard, Sébastien Gaucel e Stéphane Peyron. "Evaluation of the Food Contact Suitability of Aged Bio-Nanocomposite Materials Dedicated to Food Packaging Applications". Applied Sciences 10, n.º 3 (28 de janeiro de 2020): 877. http://dx.doi.org/10.3390/app10030877.
Texto completo da fonteGao, Chuanhui, Jing Zhang, Di Zhang, Yajie Dong, Sikai Wang, Jincheng Peng e Yuetao Liu. "Synthesis of bio-based waterborne polyesters as environmentally benign biodegradable material through regulation of unsaturated acid structure". European Polymer Journal 156 (agosto de 2021): 110632. http://dx.doi.org/10.1016/j.eurpolymj.2021.110632.
Texto completo da fonteKreetachat, Torpong, Jittiporn Kruenate e Kowit Suwannahong. "Preparation of TiO2/Bio-Composite Film by Sol-Gel Method in VOCs Photocatalytic Degradation Process". Applied Mechanics and Materials 390 (agosto de 2013): 552–56. http://dx.doi.org/10.4028/www.scientific.net/amm.390.552.
Texto completo da fonteOlejnik, Olga, Anna Masek e Adam Kiersnowski. "Thermal Analysis of Aliphatic Polyester Blends with Natural Antioxidants". Polymers 12, n.º 1 (2 de janeiro de 2020): 74. http://dx.doi.org/10.3390/polym12010074.
Texto completo da fonteKoller, Martin. "Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament?" EuroBiotech Journal 3, n.º 1 (1 de janeiro de 2019): 32–44. http://dx.doi.org/10.2478/ebtj-2019-0004.
Texto completo da fonteWyrębiak, Oledzka, Figat e Sobczak. "Application of Diethylzinc/propyl Gallate Catalytic System for Ring-Opening Copolymerization of rac-Lactide and ε-Caprolactone". Molecules 24, n.º 22 (17 de novembro de 2019): 4168. http://dx.doi.org/10.3390/molecules24224168.
Texto completo da fonteBurelo, Manuel, Araceli Martínez, Josué David Hernández-Varela, Thomas Stringer, Monserrat Ramírez-Melgarejo, Alice Y. Yau, Gabriel Luna-Bárcenas e Cecilia D. Treviño-Quintanilla. "Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers". Molecules 29, n.º 2 (12 de janeiro de 2024): 387. http://dx.doi.org/10.3390/molecules29020387.
Texto completo da fonteKelnar, Ivan, Ludmila Kaprálková, Pavel Němeček, Jiří Dybal, Rasha M. Abdel-Rahman, Michaela Vyroubalová, Martina Nevoralová e A. M. Abdel-Mohsen. "The Effects of the Deacetylation of Chitin Nanowhiskers on the Performance of PCL/PLA Bio-Nanocomposites". Polymers 15, n.º 14 (17 de julho de 2023): 3071. http://dx.doi.org/10.3390/polym15143071.
Texto completo da fonteKopitzky, Rodion. "Poly(Lactic Acid)–Poly(Butylene Succinate)–Sugar Beet Pulp Composites; Part I: Mechanics of Composites with Fine and Coarse Sugar Beet Pulp Particles". Polymers 13, n.º 15 (30 de julho de 2021): 2531. http://dx.doi.org/10.3390/polym13152531.
Texto completo da fonteBonferoni, Maria Cristina, Carla Caramella, Laura Catenacci, Bice Conti, Rossella Dorati, Franca Ferrari, Ida Genta et al. "Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field". Pharmaceutics 13, n.º 9 (26 de agosto de 2021): 1341. http://dx.doi.org/10.3390/pharmaceutics13091341.
Texto completo da fonteTodea, Bîtcan, Aparaschivei, Păușescu, Badea, Péter, Gherman, Rusu, Nagy e Kéki. "Biodegradable Oligoesters of ε-Caprolactone and 5-Hydroxymethyl-2-Furancarboxylic Acid Synthesized by Immobilized Lipases". Polymers 11, n.º 9 (26 de agosto de 2019): 1402. http://dx.doi.org/10.3390/polym11091402.
Texto completo da fonteSatchanska, Galina, Slavena Davidova e Petar D. Petrov. "Natural and Synthetic Polymers for Biomedical and Environmental Applications". Polymers 16, n.º 8 (20 de abril de 2024): 1159. http://dx.doi.org/10.3390/polym16081159.
Texto completo da fonteGiubilini, Alberto, Federica Bondioli, Massimo Messori, Gustav Nyström e Gilberto Siqueira. "Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates". Bioengineering 8, n.º 2 (23 de fevereiro de 2021): 29. http://dx.doi.org/10.3390/bioengineering8020029.
Texto completo da fonteDjouonkep, Lesly Dasilva Wandji, Christian Tatchum Tamo, Belle Elda Simo, Nasiru Issah, Marc Nivic Tchouagtie, Naomie Beolle Songwe Selabi, Ingo Doench, Arnaud Kamdem Kamdem Tamo, Binqiang Xie e Anayancy Osorio-Madrazo. "Synthesis by Melt-Polymerization of a Novel Series of Bio-Based and Biodegradable Thiophene-Containing Copolyesters with Promising Gas Barrier and High Thermomechanical Properties". Molecules 28, n.º 4 (15 de fevereiro de 2023): 1825. http://dx.doi.org/10.3390/molecules28041825.
Texto completo da fonteIvanova, Bojidarka. "Stochastic dynamics mass spectrometric and Fourier transform infrared spectroscopic structural analyses of composite biodegradable plastics". Pollution Study 5, n.º 1 (22 de julho de 2024): 2741. http://dx.doi.org/10.54517/ps.v5i1.2741.
Texto completo da fonteIvanova, Bojidarka. "Stochastic dynamics mass spectrometric and Fourier transform infrared spectroscopic structural analyses of composite biodegradable plastics". Pollution Study 5, n.º 2 (22 de setembro de 2024): 2741. http://dx.doi.org/10.54517/ps.v5i2.2741.
Texto completo da fonteEhsani, Masoume, Denis Kalugin, Huu Doan, Ali Lohi e Amira Abdelrasoul. "Bio-Sourced and Biodegradable Membranes". Applied Sciences 12, n.º 24 (14 de dezembro de 2022): 12837. http://dx.doi.org/10.3390/app122412837.
Texto completo da fonteAliotta, Laura, Alessandro Vannozzi, Luca Panariello, Vito Gigante, Maria-Beatrice Coltelli e Andrea Lazzeri. "Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films". Polymers 12, n.º 6 (17 de junho de 2020): 1366. http://dx.doi.org/10.3390/polym12061366.
Texto completo da fonteLOLADZE, Tamar, e Nino KEBADZE. "Porous films (Scaffolds) for cell growing". Journal of Technical Science and Technologies 5, n.º 1 (21 de outubro de 2016): 27–28. http://dx.doi.org/10.31578/jtst.v5i1.97.
Texto completo da fonteDutta, Geeti Kaberi, e Niranjan Karak. "Waste brewed tea leaf derived cellulose nanofiber reinforced fully bio-based waterborne polyester nanocomposite as an environmentally benign material". RSC Advances 9, n.º 36 (2019): 20829–40. http://dx.doi.org/10.1039/c9ra02973g.
Texto completo da fonteLizundia, Erlantz, Vishalkumar A. Makwana, Aitor Larrañaga, José Luis Vilas e Michael P. Shaver. "Thermal, structural and degradation properties of an aromatic–aliphatic polyester built through ring-opening polymerisation". Polymer Chemistry 8, n.º 22 (2017): 3530–38. http://dx.doi.org/10.1039/c7py00695k.
Texto completo da fonteZhao, Xipo, Huan Hu, Xin Wang, Xiaolei Yu, Weiyi Zhou e Shaoxian Peng. "Super tough poly(lactic acid) blends: a comprehensive review". RSC Advances 10, n.º 22 (2020): 13316–68. http://dx.doi.org/10.1039/d0ra01801e.
Texto completo da fonteChanda, Sananda, e S. Ramakrishnan. "Poly(alkylene itaconate)s – an interesting class of polyesters with periodically located exo-chain double bonds susceptible to Michael addition". Polymer Chemistry 6, n.º 11 (2015): 2108–14. http://dx.doi.org/10.1039/c4py01613k.
Texto completo da fonteDong, Weifu, Jingjiao Ren, Ling Lin, Dongjian Shi, Zhongbin Ni e Mingqing Chen. "Novel photocrosslinkable and biodegradable polyester from bio-renewable resource". Polymer Degradation and Stability 97, n.º 4 (abril de 2012): 578–83. http://dx.doi.org/10.1016/j.polymdegradstab.2012.01.008.
Texto completo da fonteGouda, Abdelaziz, Manuel Reali e Clara Santato. "Bio-Sourced, Potentially Biodegradable Materials for Fast Response Moisture Sensors". ECS Meeting Abstracts MA2020-01, n.º 35 (1 de maio de 2020): 2425. http://dx.doi.org/10.1149/ma2020-01352425mtgabs.
Texto completo da fonteFrank, Carina, Anita Emmerstorfer-Augustin, Thomas Rath, Gregor Trimmel, Manfred Nachtnebel e Franz Stelzer. "Bio-Polyester/Rubber Compounds: Fabrication, Characterization, and Biodegradation". Polymers 15, n.º 12 (7 de junho de 2023): 2593. http://dx.doi.org/10.3390/polym15122593.
Texto completo da fonteTodea, Anamaria, Caterina Deganutti, Mariachiara Spennato, Fioretta Asaro, Guglielmo Zingone, Tiziana Milizia e Lucia Gardossi. "Azelaic Acid: A Bio-Based Building Block for Biodegradable Polymers". Polymers 13, n.º 23 (24 de novembro de 2021): 4091. http://dx.doi.org/10.3390/polym13234091.
Texto completo da fonteDevi, Shapali, Sadguru Prakash, Ravindra Pratap Singh e Rahul Singh. "Polylactic Acid: A Bio-Based Polymer as an Emerging Substitute for Plastics". Scientific Temper 13, n.º 02 (12 de dezembro de 2022): 55–64. http://dx.doi.org/10.58414/scientifictemper.2022.13.2.10.
Texto completo da fontePandey, Vipul, Dr Rajeev Arya e Shravan Vishwakarma. "Polymer Characteristics Study to be Utilized as Waste to Energy Conversion System". SMART MOVES JOURNAL IJOSCIENCE 6, n.º 11 (18 de novembro de 2020): 44–47. http://dx.doi.org/10.24113/ijoscience.v6i11.331.
Texto completo da fonteWang, Zhaoshan, Jieqiong Yan, Tongyao Wang, Yingying Zai, Liyan Qiu e Qingguo Wang. "Fabrication and Properties of a Bio-Based Biodegradable Thermoplastic Polyurethane Elastomer". Polymers 11, n.º 7 (2 de julho de 2019): 1121. http://dx.doi.org/10.3390/polym11071121.
Texto completo da fonteNamphonsane, Atitiya, Taweechai Amornsakchai, Chin Hua Chia, Kheng Lim Goh, Sombat Thanawan, Rungtiwa Wongsagonsup e Siwaporn Meejoo Smith. "Development of Biodegradable Rigid Foams from Pineapple Field Waste". Polymers 15, n.º 13 (29 de junho de 2023): 2895. http://dx.doi.org/10.3390/polym15132895.
Texto completo da fonteUĞUR NİGİZ, Filiz, e Buket ONAT. "Investigation of the potential use of halloysite nanotube doped chitosan films for food packaging". Journal of Amasya University the Institute of Sciences and Technology 4, n.º 2 (31 de dezembro de 2023): 108–15. http://dx.doi.org/10.54559/jauist.1404602.
Texto completo da fonte