Literatura científica selecionada sobre o tema "Bilevel optimal control"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Bilevel optimal control".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Bilevel optimal control"
Mehlitz, Patrick, e Gerd Wachsmuth. "Weak and strong stationarity in generalized bilevel programming and bilevel optimal control". Optimization 65, n.º 5 (31 de dezembro de 2015): 907–35. http://dx.doi.org/10.1080/02331934.2015.1122007.
Texto completo da fonteYe, Jane J. "Optimal Strategies For Bilevel Dynamic Problems". SIAM Journal on Control and Optimization 35, n.º 2 (março de 1997): 512–31. http://dx.doi.org/10.1137/s0363012993256150.
Texto completo da fonteBonnel, Henri, e Jacqueline Morgan. "Semivectorial Bilevel Convex Optimal Control Problems: Existence Results". SIAM Journal on Control and Optimization 50, n.º 6 (janeiro de 2012): 3224–41. http://dx.doi.org/10.1137/100795450.
Texto completo da fonteDempe, S. "Computing optimal incentives via bilevel programming". Optimization 33, n.º 1 (janeiro de 1995): 29–42. http://dx.doi.org/10.1080/02331939508844061.
Texto completo da fonteYe, Jianxiong, e An Li. "Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control". Journal of Industrial & Management Optimization 13, n.º 5 (2017): 1–21. http://dx.doi.org/10.3934/jimo.2018101.
Texto completo da fonteLin, Hongzhi. "Optimal Design of Cordon Sanitaire for Regular Epidemic Control". Advances in Civil Engineering 2021 (1 de junho de 2021): 1–11. http://dx.doi.org/10.1155/2021/5581758.
Texto completo da fonteAtiya Wardil *, Othman, e Samera Khaleel Ibrahim. "The Bi-level Programming Approach to Improve the Inventory Control System with a Practical Application". Journal of Economics and Administrative Sciences 30, n.º 142 (6 de setembro de 2024): 509–31. http://dx.doi.org/10.33095/gd8dy062.
Texto completo da fonteAmouzegar, Mahyar A., e Khosrow Moshirvaziri. "Determining optimal pollution control policies: An application of bilevel programming". European Journal of Operational Research 119, n.º 1 (novembro de 1999): 100–120. http://dx.doi.org/10.1016/s0377-2217(98)00336-1.
Texto completo da fonteKnauer, Matthias. "Fast and save container cranes as bilevel optimal control problems". Mathematical and Computer Modelling of Dynamical Systems 18, n.º 4 (agosto de 2012): 465–86. http://dx.doi.org/10.1080/13873954.2011.642388.
Texto completo da fonteChen, Yi, Kadhim Hayawi, Meikai Fan, Shih Yu Chang, Jie Tang, Ling Yang, Rui Zhao, Zhongqi Mao e Hong Wen. "A Bilevel Optimization Model Based on Edge Computing for Microgrid". Sensors 22, n.º 20 (11 de outubro de 2022): 7710. http://dx.doi.org/10.3390/s22207710.
Texto completo da fonteTeses / dissertações sobre o assunto "Bilevel optimal control"
Mehlitz, Patrick. "Contributions to complementarity and bilevel programming in Banach spaces". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-227091.
Texto completo da fonteFisch, Florian [Verfasser]. "Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems / Florian Fisch". München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441756/34.
Texto completo da fonteStibbe, Hilke Isabell [Verfasser], e Ekaterina [Akademischer Betreuer] Kostina. "Special Bilevel Quadratic Problems for Construction of Worst-Case Feedback Control in Linear-Quadratic Optimal Control Problems under Uncertainties / Hilke Isabell Stibbe ; Betreuer: Ekaterina Kostina". Marburg : Philipps-Universität Marburg, 2019. http://d-nb.info/1202110509/34.
Texto completo da fonteFisch, Florian [Verfasser], Florian [Akademischer Betreuer] Holzapfel e Matthias [Akademischer Betreuer] Gerdts. "Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems / Florian Fisch. Gutachter: Florian Holzapfel ; Matthias Gerdts. Betreuer: Florian Holzapfel". München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1013435443/34.
Texto completo da fontePalagachev, Konstantin [Verfasser], Matthias [Akademischer Betreuer] Gerdts, Matthias [Gutachter] Gerdts e Sebastian [Gutachter] Sager. "Mixed-Integer Optimal Control and Bilevel Optimization: Vanishing Constraints and Scheduling Tasks / Konstantin Palagachev ; Gutachter: Matthias Gerdts, Sebastian Sager ; Akademischer Betreuer: Matthias Gerdts ; Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik". Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2017. http://d-nb.info/1172216533/34.
Texto completo da fonteDutto, Rémy. "Méthode à deux niveaux et préconditionnement géométrique en contrôle optimal. Application au problème de répartition de couple des véhicules hybrides électriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP088.
Texto completo da fonteMotivated by the torque split and gear shift industrial problem of hybrid electric vehicles, this work mainly proposes two new indirect optimal control problem methods. The first one is the Macro-Micro method, which is based on a bilevel decomposition of the optimal control problem and uses Bellman’s value functions at fixed times. These functions are known to be difficult to create. The main idea of this method is to approximate these functions by neural networks, which leads to a hierarchical resolution of a low dimensional optimization problem and a set of independent optimal control problems defined on smaller time intervals. The second one is a geometric preconditioning method, which allows a more efficient resolution of the optimal control problem. This method is based on a geometrical interpretation of the Pontryagin’s co-state and on the Mathieu transformation, and uses a linear diffeomorphism which transforms an ellipse into a circle. These two methods, presented separately, can be combined and lead together to a fast, robust and light resolution for the torque split and gear shift optimal control problem, closer to the embedded requirements
Capítulos de livros sobre o assunto "Bilevel optimal control"
Mehlitz, Patrick, e Gerd Wachsmuth. "Bilevel Optimal Control: Existence Results and Stationarity Conditions". In Bilevel Optimization, 451–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52119-6_16.
Texto completo da fonteMarcotte, Patrice, e Gilles Savard. "A Bilevel Programming Approach to Optimal Price Setting". In Decision & Control in Management Science, 97–117. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3561-1_6.
Texto completo da fonteBonnel, Henri, e Jacqueline Morgan. "Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems". In Computational and Analytical Mathematics, 45–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7621-4_4.
Texto completo da fonteDempe, Stephan, Felix Harder, Patrick Mehlitz e Gerd Wachsmuth. "Analysis and Solution Methods for Bilevel Optimal Control Problems". In International Series of Numerical Mathematics, 77–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_4.
Texto completo da fontePalagachev, Konstantin D., e Matthias Gerdts. "Numerical Approaches Towards Bilevel Optimal Control Problems with Scheduling Tasks". In Math for the Digital Factory, 205–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63957-4_10.
Texto completo da fontePalagachev, Konstantin, e Matthias Gerdts. "Exploitation of the Value Function in a Bilevel Optimal Control Problem". In IFIP Advances in Information and Communication Technology, 410–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-55795-3_39.
Texto completo da fonteKnauer, Matthias, e Christof Büskens. "Hybrid Solution Methods for Bilevel Optimal Control Problems with Time Dependent Coupling". In Recent Advances in Optimization and its Applications in Engineering, 237–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12598-0_20.
Texto completo da fonteBock, Hans Georg, Ekaterina Kostina, Marta Sauter, Johannes P. Schlöder e Matthias Schlöder. "Numerical Methods for Diagnosis and Therapy Design of Cerebral Palsy by Bilevel Optimal Control of Constrained Biomechanical Multi-Body Systems". In International Series of Numerical Mathematics, 21–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Bilevel optimal control"
Samadi, Sepideh, Daniel Burbano e Farzad Yousefian. "Achieving Optimal Complexity Guarantees for a Class of Bilevel Convex Optimization Problems". In 2024 American Control Conference (ACC), 2206–11. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644364.
Texto completo da fonteMinciardi, R., e M. Robba. "Bilevel approach for the optimal control of interconnected microgrids". In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039770.
Texto completo da fonteSuryan, Varun, Ankur Sinha, Pekka Malo e Kalyanmoy Deb. "Handling inverse optimal control problems using evolutionary bilevel optimization". In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. http://dx.doi.org/10.1109/cec.2016.7744019.
Texto completo da fonteEnmin Feng, Zhigang Jiang, Yanjie Li e Zhilong Xiu. "The Optimal Properties of Nonlinear Bilevel Multi-stage Dynamic System". In 2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/wcica.2006.1712507.
Texto completo da fonteTomasi, Matilde, e Alessio Artoni. "Identification of Motor Control Objectives in Human Locomotion via Multi-Objective Inverse Optimal Control". In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89536.
Texto completo da fonteFisch, Florian, Jakob Lenz, Florian Holzapfel e Gottfried Sachs. "On the Solution of Bilevel Optimal Control Problems to Increase the Fairness in Air Races". In AIAA Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-7625.
Texto completo da fonte