Artigos de revistas sobre o tema "Bed roughness"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Bed roughness".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Lang, Shinan, Ben Xu, Xiangbin Cui, Kun Luo, Jingxue Guo, Xueyuan Tang, Yiheng Cai, Bo Sun e Martin J. Siegert. "A self-adaptive two-parameter method for characterizing roughness of multi-scale subglacial topography". Journal of Glaciology 67, n.º 263 (24 de fevereiro de 2021): 560–68. http://dx.doi.org/10.1017/jog.2021.12.
Texto completo da fonteFaruque, Md Abdullah Al, e Ram Balachandar. "Roughness effects on turbulence characteristics in an open channel flow". Canadian Journal of Civil Engineering 37, n.º 12 (dezembro de 2010): 1600–1612. http://dx.doi.org/10.1139/l10-098.
Texto completo da fonteA.Merry, Marwa. "EXPERIMENTAL STUDY FOR DETERMINE MANNING'S COEFFICIENT WITH DIFFERENT SLOPES AND CHANNEL BED MATERIALS". Kufa Journal of Engineering 8, n.º 3 (12 de novembro de 2017): 76–88. http://dx.doi.org/10.30572/2018/kje/8031160.
Texto completo da fonteIrzooki, Raad Hoobi, e Ayad Saoud Najem. "Experimental Investigation for Free Overfall of Flow in Semi-circular Channels". IOP Conference Series: Earth and Environmental Science 1120, n.º 1 (1 de dezembro de 2022): 012010. http://dx.doi.org/10.1088/1755-1315/1120/1/012010.
Texto completo da fonteNikora, Vladimir I., Derek G. Goring e Barry J. F. Biggs. "On gravel-bed roughness characterization". Water Resources Research 34, n.º 3 (março de 1998): 517–27. http://dx.doi.org/10.1029/97wr02886.
Texto completo da fonteMajeed, Hayder Q., Ali M. Ghazal e Basheer Al-Hadeethi. "Experimental and Numerical Study of Open Channel Flow with T-Section Artificial Bed Roughness". Mathematical Modelling of Engineering Problems 9, n.º 6 (31 de dezembro de 2022): 1589–95. http://dx.doi.org/10.18280/mmep.090619.
Texto completo da fonteFALCINI, FRANCESCA A. M., DAVID M. RIPPIN, MAARTEN KRABBENDAM e KATHERINE A. SELBY. "Quantifying bed roughness beneath contemporary and palaeo-ice streams". Journal of Glaciology 64, n.º 247 (13 de setembro de 2018): 822–34. http://dx.doi.org/10.1017/jog.2018.71.
Texto completo da fonteFredsøe, J., B. M. Sumer, T. S. Laursen e C. Pedersen. "Experimental investigation of wave boundary layers with a sudden change in roughness". Journal of Fluid Mechanics 252 (julho de 1993): 117–45. http://dx.doi.org/10.1017/s0022112093003696.
Texto completo da fonteDevi, Kalpana, Prashanth Reddy Hanmaiahgari, Ram Balachandar e Jaan H. Pu. "A Comparative Study between Sand- and Gravel-Bed Open Channel Flows in the Wake Region of a Bed-Mounted Horizontal Cylinder". Fluids 6, n.º 7 (1 de julho de 2021): 239. http://dx.doi.org/10.3390/fluids6070239.
Texto completo da fonteKashefipour, Seyed Mahmood, Mehdi Daryaee e Mehdi Ghomeshi. "Effect of bed roughness on velocity profile and water entrainment in a sedimentary density current". Canadian Journal of Civil Engineering 45, n.º 1 (janeiro de 2018): 9–17. http://dx.doi.org/10.1139/cjce-2016-0490.
Texto completo da fonteKhechiba, Haroun, Ali Ghomri, Djamel Besser, Ibtissam Herri e Salim Khechana. "Experimental study of the sequent depths ratio of the hydraulic jump in a rectangular compound channel with rough main and minor beds and zero slope". STUDIES IN ENGINEERING AND EXACT SCIENCES 6, n.º 1 (8 de janeiro de 2025): e13139. https://doi.org/10.54021/seesv6n1-003.
Texto completo da fonteBertin, Stephane, Jane Groom e Heide Friedrich. "Grain and bedform roughness properties isolated from gravel-patch DEMs". E3S Web of Conferences 40 (2018): 04005. http://dx.doi.org/10.1051/e3sconf/20184004005.
Texto completo da fonteDing, Lei, e Qing-He Zhang. "LATTICE BOLTZMANN SIMULATION TO CHARACTERIZE ROUGHNESS EFFECTS OF OSCILLATORY BOUNDARY LAYER FLOW OVER A ROUGH BED". Coastal Engineering Proceedings 1, n.º 32 (30 de janeiro de 2011): 3. http://dx.doi.org/10.9753/icce.v32.sediment.3.
Texto completo da fonteHumbyrd, Chelsea Joy, e Ole Secher Madsen. "PREDICTING MOVABLE BED ROUGHNESS IN COASTAL WATERS". Coastal Engineering Proceedings 1, n.º 32 (29 de janeiro de 2011): 6. http://dx.doi.org/10.9753/icce.v32.sediment.6.
Texto completo da fonteChen, Yifan, Feifeng Cao, Weiping Cheng e Bin Liu. "Enhancing the Accuracy of Water-Level Forecasting with a New Parameter-Inversion Model for Estimating Bed Roughness in Hydrodynamic Models". Applied Sciences 13, n.º 7 (3 de abril de 2023): 4551. http://dx.doi.org/10.3390/app13074551.
Texto completo da fonteLópez, Raúl, e Javier Barragán. "Equivalent Roughness of Gravel-Bed Rivers". Journal of Hydraulic Engineering 134, n.º 6 (junho de 2008): 847–51. http://dx.doi.org/10.1061/(asce)0733-9429(2008)134:6(847).
Texto completo da fonteWu, Weiming, e Sam S. Y. Wang. "Movable Bed Roughness in Alluvial Rivers". Journal of Hydraulic Engineering 125, n.º 12 (dezembro de 1999): 1309–12. http://dx.doi.org/10.1061/(asce)0733-9429(1999)125:12(1309).
Texto completo da fonteHager, Willi H., Giuseppe Del Giudice, Weiming Wu e Sam S. Y. Wang. "Movable Bed Roughness in Alluvial Rivers". Journal of Hydraulic Engineering 127, n.º 7 (julho de 2001): 627–29. http://dx.doi.org/10.1061/(asce)0733-9429(2001)127:7(627).
Texto completo da fonteWiberg, Patricia L., e David M. Rubin. "Bed roughness produced by saltating sediment". Journal of Geophysical Research 94, n.º C4 (1989): 5011. http://dx.doi.org/10.1029/jc094ic04p05011.
Texto completo da fonteGallagher, Edith L., E. B. Thornton e T. P. Stanton. "Sand bed roughness in the nearshore". Journal of Geophysical Research: Oceans 108, n.º C2 (fevereiro de 2003): n/a. http://dx.doi.org/10.1029/2001jc001081.
Texto completo da fonteRippin, D. M., D. G. Vaughan e H. F. J. Corr. "The basal roughness of Pine Island Glacier, West Antarctica". Journal of Glaciology 57, n.º 201 (2011): 67–76. http://dx.doi.org/10.3189/002214311795306574.
Texto completo da fonteBalachandar, Ram, e V. C. Patel. "Flow over a fixed rough dune". Canadian Journal of Civil Engineering 35, n.º 5 (maio de 2008): 511–20. http://dx.doi.org/10.1139/l08-004.
Texto completo da fonteKatopodis, C., e H. K. Ghamry. "Hydrodynamic and physical assessment of ice-covered conditions for three reaches of the Athabasca River, Alberta, Canada". Canadian Journal of Civil Engineering 34, n.º 6 (1 de junho de 2007): 717–30. http://dx.doi.org/10.1139/l07-026.
Texto completo da fonteWarmink, J. J. "Dune dynamics and roughness under gradually varying flood waves, comparing flume and field observations". Advances in Geosciences 39 (7 de agosto de 2014): 115–21. http://dx.doi.org/10.5194/adgeo-39-115-2014.
Texto completo da fonteDomhof, Boyan C. A., Koen D. Berends, Aukje Spruyt, Jord J. Warmink e Suzanne J. M. H. Hulscher. "Discharge and location dependency of calibrated main channel roughness: Case study on the River Waal". E3S Web of Conferences 40 (2018): 06038. http://dx.doi.org/10.1051/e3sconf/20184006038.
Texto completo da fonteLau, Kok-Tee, Mastura Mohammad Taha, Syahibudil Ikhwan Abdul Kudus e See Ern Chung. "EFFECT OF PRINT BED’S HEAT FLOW ON CURLING AND SURFACE ROUGHNESS OF FDM-PRINTED ABS SAMPLE". Jurnal Teknologi 85, n.º 2 (23 de fevereiro de 2023): 211–22. http://dx.doi.org/10.11113/jurnalteknologi.v85.18610.
Texto completo da fonteMIGNOT, EMMANUEL, D. HURTHER e E. BARTHELEMY. "On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow". Journal of Fluid Mechanics 638 (7 de outubro de 2009): 423–52. http://dx.doi.org/10.1017/s0022112009990772.
Texto completo da fonteKee, Choong Pei, Deepak T. J e Raman Bai. "Determining Coefficient of Discharge and Coefficient of Roughness for Short Grass Bed and Concrete Bed". International Journal of Trend in Scientific Research and Development Special Issue, Special Issue-ICAEIT2017 (30 de novembro de 2018): 23–33. http://dx.doi.org/10.31142/ijtsrd19119.
Texto completo da fonteRatul, Das, e Nizar Sinan. "Influence of bed roughness on near-bed turbulent flow characteristics". International Journal of Water Resources and Environmental Engineering 12, n.º 3 (31 de julho de 2020): 47–56. http://dx.doi.org/10.5897/ijwree2015.0624.
Texto completo da fonteAkutina, Yulia, Frédéric Moulin, Maxime Rouzes e Olivier Eiff. "Flow structures in a shallow channel with lateral bed-roughness variation". E3S Web of Conferences 40 (2018): 02051. http://dx.doi.org/10.1051/e3sconf/20184002051.
Texto completo da fonteRippin, David M. "Bed roughness beneath the Greenland ice sheet". Journal of Glaciology 59, n.º 216 (2013): 724–32. http://dx.doi.org/10.3189/2013jog12j212.
Texto completo da fonteNikora, V. I., T. Stoesser, S. M. Cameron, M. Stewart, K. Papadopoulos, P. Ouro, R. McSherry, A. Zampiron, I. Marusic e R. A. Falconer. "Friction factor decomposition for rough-wall flows: theoretical background and application to open-channel flows". Journal of Fluid Mechanics 872 (13 de junho de 2019): 626–64. http://dx.doi.org/10.1017/jfm.2019.344.
Texto completo da fonteNielsen, Peter, e Paul A. Guard. "VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS". Coastal Engineering Proceedings 1, n.º 32 (26 de janeiro de 2011): 1. http://dx.doi.org/10.9753/icce.v32.sediment.1.
Texto completo da fontePenna, Nadia, Francesco Coscarella, Antonino D’Ippolito e Roberto Gaudio. "Bed Roughness Effects on the Turbulence Characteristics of Flows through Emergent Rigid Vegetation". Water 12, n.º 9 (26 de agosto de 2020): 2401. http://dx.doi.org/10.3390/w12092401.
Texto completo da fonteCooper, Michael A., Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams e Jonathan L. Bamber. "Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology". Cryosphere 13, n.º 11 (26 de novembro de 2019): 3093–115. http://dx.doi.org/10.5194/tc-13-3093-2019.
Texto completo da fonteHoobi, Raad, e Ayad Saoud Najem. "Study the Affecting Factors on Free overfall Flow and Bed Roughness in Semi-Circular Channels by Artificial Neural Network". Tikrit Journal of Engineering Sciences 29, n.º 4 (25 de dezembro de 2022): 69–78. http://dx.doi.org/10.25130/tjes.29.4.8.
Texto completo da fonteNardone, Paride, e Katinka Koll. "Velocity field and drag force measurements of a cube and a hemisphere mounted on an artificial bed surface roughness". E3S Web of Conferences 40 (2018): 05022. http://dx.doi.org/10.1051/e3sconf/20184005022.
Texto completo da fonteZwolenik, Monika, e Bogusław Michalec. "Effect of water surface slope and friction slope on the value of the estimated Manning’s roughness coefficient in gravel-bed streams". Journal of Hydrology and Hydromechanics 71, n.º 1 (4 de fevereiro de 2023): 80–90. http://dx.doi.org/10.2478/johh-2022-0041.
Texto completo da fonteBerends, Constantijn J., Roderik S. W. van de Wal, Tim van den Akker e William H. Lipscomb. "Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response". Cryosphere 17, n.º 4 (12 de abril de 2023): 1585–600. http://dx.doi.org/10.5194/tc-17-1585-2023.
Texto completo da fonteAlwan, Iman A., e Riyadh Z. Azzubaidi. "Investigations on Large-Scale Geometric Roughness Elements in Open Channels with Different Heights". Association of Arab Universities Journal of Engineering Sciences 28, n.º 1 (31 de março de 2021): 07–14. http://dx.doi.org/10.33261/jaaru.2021.28.1.002.
Texto completo da fonteIrzooki, Raad, e Safa Hasan. "Characteristics of flow over the free overfall of triangular channel". MATEC Web of Conferences 162 (2018): 03006. http://dx.doi.org/10.1051/matecconf/201816203006.
Texto completo da fonteZhou, Yin-jun, Jin-you Lu, Li Chen e Jie Ren. "Bed roughness adjustments determined from fractal measurements of river-bed morphology". Journal of Hydrodynamics 30, n.º 5 (14 de setembro de 2018): 882–89. http://dx.doi.org/10.1007/s42241-018-0101-y.
Texto completo da fonteMatoušek, Václav, e Jan Krupička. "On equivalent roughness of mobile bed at high shear stress". Journal of Hydrology and Hydromechanics 57, n.º 3 (1 de setembro de 2009): 191–99. http://dx.doi.org/10.2478/v10098-009-0018-9.
Texto completo da fonteSmart, Graeme, Jochen Aberle, Maurice Duncan e Jeremy Walsh. "Measurement and analysis of alluvial bed roughness". Journal of Hydraulic Research 42, n.º 3 (janeiro de 2004): 227–37. http://dx.doi.org/10.1080/00221686.2004.9728388.
Texto completo da fonteBertin, Stephane, Jane Groom e Heide Friedrich. "Isolating roughness scales of gravel-bed patches". Water Resources Research 53, n.º 8 (agosto de 2017): 6841–56. http://dx.doi.org/10.1002/2016wr020205.
Texto completo da fonteBicudo, J. R., e M. F. Giorgetti. "The Effect of Strip Bed Roughness on the Reaeration Rate Coefficient". Water Science and Technology 23, n.º 10-12 (1 de maio de 1991): 1929–39. http://dx.doi.org/10.2166/wst.1991.0649.
Texto completo da fonteCai, Yiheng, Fuxing Wan, Shinan Lang, Xiangbin Cui e Zijun Yao. "Multi-Branch Deep Neural Network for Bed Topography of Antarctica Super-Resolution: Reasonable Integration of Multiple Remote Sensing Data". Remote Sensing 15, n.º 5 (28 de fevereiro de 2023): 1359. http://dx.doi.org/10.3390/rs15051359.
Texto completo da fonteDaneshfaraz, Rasoul, Amir Ghaderi, Aliakbar Akhtari e Silvia Di Francesco. "On the Effect of Block Roughness in Ogee Spillways with Flip Buckets". Fluids 5, n.º 4 (16 de outubro de 2020): 182. http://dx.doi.org/10.3390/fluids5040182.
Texto completo da fonteSchönfeldt, Hans-Jürgen. "On the aeolian saltation bed shear stress and saltation roughness length". Meteorologische Zeitschrift 15, n.º 3 (10 de julho de 2006): 307–15. http://dx.doi.org/10.1127/0941-2948/2006/0126.
Texto completo da fonteZhang, Zeng, e S. Samuel Li. "Large Eddy Simulation of Near-Bed Flow and Turbulence over Roughness Elements in the Shallow Open-Channel". Water 12, n.º 10 (27 de setembro de 2020): 2701. http://dx.doi.org/10.3390/w12102701.
Texto completo da fonte