Artigos de revistas sobre o tema "Batteries solides"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Batteries solides".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Alcaraz, Lorena, Carlos Díaz-Guerra, Joaquín Calbet, María Luisa López e Félix A. López. "Obtaining and Characterization of Highly Crystalline Recycled Graphites from Different Types of Spent Batteries". Materials 15, n.º 9 (30 de abril de 2022): 3246. http://dx.doi.org/10.3390/ma15093246.
Texto completo da fonteMamatkarimov, O., B. Uktamaliyev e A. Abdukarimov. "PREPARATION OF POLY (METHYL METHACRYLATE)-BASED POLYMER ELECTROLYTES FOR SOLID-STATE FOR Mg-ION BATTERIES". SEMOCONDUCTOR PHYSICS AND MICROELECTRONICS 3, n.º 4 (30 de agosto de 2021): 16–19. http://dx.doi.org/10.37681/2181-1652-019-x-2021-4-2.
Texto completo da fonteMaier, Joachim, e Ute Lauer. "Ionic Contact Equilibria in Solids-Implications for Batteries and Sensors". Berichte der Bunsengesellschaft für physikalische Chemie 94, n.º 9 (setembro de 1990): 973–78. http://dx.doi.org/10.1002/bbpc.19900940918.
Texto completo da fonteKanno, Ryoji, Satoshi Hori, Keisuke Shimizu e Kazuhiro HIkima. "(Invited) Development and New Perspectives in Lithium Ion Conductors and Solid-State Batteries". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1085. https://doi.org/10.1149/ma2024-0281085mtgabs.
Texto completo da fonteAlcántara, Ricardo, Carlos Pérez-Vicente, Pedro Lavela, José L. Tirado, Alejandro Medina e Radostina Stoyanova. "Review and New Perspectives on Non-Layered Manganese Compounds as Electrode Material for Sodium-Ion Batteries". Materials 16, n.º 21 (30 de outubro de 2023): 6970. http://dx.doi.org/10.3390/ma16216970.
Texto completo da fonteMauger, Julien, Paolella, Armand e Zaghib. "Building Better Batteries in the Solid State: A Review". Materials 12, n.º 23 (25 de novembro de 2019): 3892. http://dx.doi.org/10.3390/ma12233892.
Texto completo da fonteCheong, Do Sol, e Hyun-Kon Song. "Organic Ice Electrolytes for Lithium Batteries". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1100. https://doi.org/10.1149/ma2024-0281100mtgabs.
Texto completo da fonteKim, Sangtae, Shu Yamaguchi e James A. Elliott. "Solid-State Ionics in the 21st Century: Current Status and Future Prospects". MRS Bulletin 34, n.º 12 (dezembro de 2009): 900–906. http://dx.doi.org/10.1557/mrs2009.211.
Texto completo da fonteOta, Hiroki. "(Invited) Application of Liquid Metals in Battery Technology". ECS Meeting Abstracts MA2024-02, n.º 35 (22 de novembro de 2024): 2502. https://doi.org/10.1149/ma2024-02352502mtgabs.
Texto completo da fonteYang, Jinlin, Jibiao Li, Wenbin Gong e Fengxia Geng. "Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature". Proceedings of the National Academy of Sciences 118, n.º 38 (14 de setembro de 2021): e2111549118. http://dx.doi.org/10.1073/pnas.2111549118.
Texto completo da fonteDoménech-Carbó, Antonio, Jan Labuda e Fritz Scholz. "Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report)". Pure and Applied Chemistry 85, n.º 3 (16 de dezembro de 2012): 609–31. http://dx.doi.org/10.1351/pac-rep-11-11-13.
Texto completo da fonteMorales, Yam, Nelson Herrera e Kevin Pérez. "Lithium carbonate sedimentation using flocculants with different ionic bases". Chemical Industry 75, n.º 4 (2021): 205–12. http://dx.doi.org/10.2298/hemind201128020m.
Texto completo da fonteGao, Xiang, Daining Fang e Jianmin Qu. "A chemo-mechanics framework for elastic solids with surface stress". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, n.º 2182 (outubro de 2015): 20150366. http://dx.doi.org/10.1098/rspa.2015.0366.
Texto completo da fonteCardoza, Neal Amadeus, Mary Qin Hassig, Taber Yim, Gregory R. Schwenk, Michel W. Barsoum e Vibha Kalra. "Dopamine Functionalized TiO2 1D Lepidocrocite Mesoporous Particles As a Sulfur Host". ECS Meeting Abstracts MA2024-01, n.º 1 (9 de agosto de 2024): 109. http://dx.doi.org/10.1149/ma2024-011109mtgabs.
Texto completo da fonteXiao, Chuanlian, Chia-Chin Chen e Joachim Maier. "Discrete Modeling of Ionic Space Charge Zones in Solids". ECS Meeting Abstracts MA2022-01, n.º 45 (7 de julho de 2022): 1905. http://dx.doi.org/10.1149/ma2022-01451905mtgabs.
Texto completo da fonteXi, Dawei, Zheng Yang, Abdulrahman Alfaraidi e Michael J. Aziz. "Single-Membrane pH-Decoupling Aqueous Battery Using Proton-Coupled Electrochemistry for pH Recovery". ECS Meeting Abstracts MA2024-02, n.º 1 (22 de novembro de 2024): 12. https://doi.org/10.1149/ma2024-02112mtgabs.
Texto completo da fonteBistri, Donald, e Claudio V. Di Leo. "A Thermodynamically Consistent, Phase-Field Electro-Chemo-Mechanical Theory with Account for Damage in Solids: Application to Metal Filament Growth in Solid-State Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 523. http://dx.doi.org/10.1149/ma2022-024523mtgabs.
Texto completo da fonteGiorgetti, Marco. "A Review on the Structural Studies of Batteries and Host Materials by X-Ray Absorption Spectroscopy". ISRN Materials Science 2013 (9 de maio de 2013): 1–22. http://dx.doi.org/10.1155/2013/938625.
Texto completo da fonteKaterine, Igal, Arreche Romina A, Sambeth Jorge E, Bellotti Natalia, Vega-Baudrit José R, Redondo-Gómez Carlos e Vázquez Patricia G. "Antifungal activity of cotton fabrics finished modified silica-silver- carbon-based hybrid nanoparticles". Textile Research Journal 89, n.º 5 (19 de fevereiro de 2018): 825–33. http://dx.doi.org/10.1177/0040517518755792.
Texto completo da fonteSzpakiewicz-Szatan, Aleksander, Szymon Starzonek, Tomasz K. Pietrzak, Jerzy E. Garbarczyk, Sylwester J. Rzoska e Michał Boćkowski. "Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteries". Nanomaterials 13, n.º 1 (30 de dezembro de 2022): 164. http://dx.doi.org/10.3390/nano13010164.
Texto completo da fonteKleefoot, Max-Jonathan, Jens Sandherr, Marc Sailer, Sara Nester, Jiří Martan, Volker Knoblauch, Malte Kumkar e Harald Riegel. "Investigation on the parameter dependency of the perforation process of graphite based lithium-ion battery electrodes using ultrashort laser pulses". Journal of Laser Applications 34, n.º 4 (novembro de 2022): 042003. http://dx.doi.org/10.2351/7.0000757.
Texto completo da fonteZhang, Yirui, Dimitrios Fraggedakis, Tao Gao, Shakul Pathak, Ryan Stephens, Martin Z. Bazant e Yang Shao-Horn. "Lithium-Ion Intercalation By Coupled Ion-Electron Transfer Mechanism". ECS Meeting Abstracts MA2024-02, n.º 2 (22 de novembro de 2024): 221. https://doi.org/10.1149/ma2024-022221mtgabs.
Texto completo da fonteCardenas, Jorge Antonio, John Paul Bullivant, Bryan R. Wygant, Laura C. Merrill, Igor V. Kolesnichenko, Aliya S. Lapp, Timothy N. Lambert et al. "3D Printing of Conversion Cathodes for Enhanced Custom-Form Lithium Batteries". ECS Meeting Abstracts MA2023-02, n.º 1 (22 de dezembro de 2023): 101. http://dx.doi.org/10.1149/ma2023-021101mtgabs.
Texto completo da fonteHelms, Brett. "Molecular Engineering for Redox-Flow Batteries Designed for Long-Duration Energy Storage". ECS Meeting Abstracts MA2023-01, n.º 3 (28 de agosto de 2023): 776. http://dx.doi.org/10.1149/ma2023-013776mtgabs.
Texto completo da fonteSteinle, Dominik, Fanglin Wu, Guk-Tae Kim, Stefano Passerini e Dominic Bresser. "PEO-based Interlayers for LAGP-type Solid-State Lithium-Metal Batteries". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 375. http://dx.doi.org/10.1149/ma2022-024375mtgabs.
Texto completo da fonteLi, Yuanchao, Joshua Abbey e Trung Van Nguyen. "Precipitation Mechanism of VOSO4 in Oversaturated Electrolytes of the Solid-Liquid Storage Method in Vanadium Redox Flow Batteries". ECS Meeting Abstracts MA2023-01, n.º 3 (28 de agosto de 2023): 735. http://dx.doi.org/10.1149/ma2023-013735mtgabs.
Texto completo da fontePalluzzi, Matteo, Akiko Tsurumaki, Henry Adenusi, Maria Assunta Navarra e Stefano Passerini. "Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives". Energy Materials 3, n.º 6 (2023): 300049. http://dx.doi.org/10.20517/energymater.2023.48.
Texto completo da fonteCui, Zhiwei, Feng Gao e Jianmin Qu. "Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries". Journal of the Mechanics and Physics of Solids 61, n.º 2 (fevereiro de 2013): 293–310. http://dx.doi.org/10.1016/j.jmps.2012.11.001.
Texto completo da fonteKalra, Charanjit Singh, Ankur Mohan e Gurkiran Kaur. "An unusual case of Ayurvedic tablet as foreign body cricopharynx". International Journal of Otorhinolaryngology and Head and Neck Surgery 6, n.º 3 (24 de fevereiro de 2020): 592. http://dx.doi.org/10.18203/issn.2454-5929.ijohns20200643.
Texto completo da fonteKong, Dexu, Eny Kusrini e Lee D. Wilson. "Binary Pectin-Chitosan Composites for the Uptake of Lanthanum and Yttrium Species in Aqueous Media". Micromachines 12, n.º 5 (22 de abril de 2021): 478. http://dx.doi.org/10.3390/mi12050478.
Texto completo da fonteOhno, Saneyuki, e Zheng Huang. "(Invited) New Class of Halide-Based Na-Ion Conducting Solids and a Critical Role of the Anion Framework". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1052. https://doi.org/10.1149/ma2024-0281052mtgabs.
Texto completo da fonteWang, Yan. "(Invited) Towards Automated Materials Discovery for Next-Generation Batteries with Solid-State Electrolytes". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1101. https://doi.org/10.1149/ma2024-0281101mtgabs.
Texto completo da fonteGodinez Brizuela, Omar Emmanuel, Daniel Niblett e Kristian Etienne Einarsrud. "Pore-Scale Micro-Structural Analysis of Electrode Conductance in Metal Displacement Batteries". ECS Meeting Abstracts MA2022-01, n.º 1 (7 de julho de 2022): 148. http://dx.doi.org/10.1149/ma2022-011148mtgabs.
Texto completo da fonteFalco, Marisa, Gabriele Lingua, Silvia Porporato, Ying Zhang, Mingjie Zhang, Matteo Gastaldi, Francesco Gambino et al. "An Overview on Polymer-Based Electrolytes with High Ionic Mobility for Safe Operation of Solid-State Batteries". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 604. http://dx.doi.org/10.1149/ma2023-024604mtgabs.
Texto completo da fonteLi, Wenyue, Shiqi Li, Ayrton A. Bernussi e Zhaoyang Fan. "3-D Edge-Oriented Electrocatalytic NiCo2S4 Nanoflakes on Vertical Graphene for Li-S Batteries". Energy Material Advances 2021 (22 de março de 2021): 1–11. http://dx.doi.org/10.34133/2021/2712391.
Texto completo da fonteAllen, Jan L. "(Keynote, Digital Presentation) Mixed Electronic-Ionic Conduction in Spinel-Structured Solid Electrolyte-Electrodes for Li-Ion Batteries". ECS Meeting Abstracts MA2022-01, n.º 38 (7 de julho de 2022): 1653. http://dx.doi.org/10.1149/ma2022-01381653mtgabs.
Texto completo da fonteGreene, Samuel M., e Donald J. Siegel. "Computational Investigations of Features for Predicting Ionic Conductivity in Multivalent Solid Electrolytes". ECS Meeting Abstracts MA2024-02, n.º 9 (22 de novembro de 2024): 1428. https://doi.org/10.1149/ma2024-0291428mtgabs.
Texto completo da fonteFernández-Saavedra, Rocío, Margarita Darder, Almudena Gómez-Avilés, Pilar Aranda e Eduardo Ruiz-Hitzky. "Polymer-Clay Nanocomposites as Precursors of Nanostructured Carbon Materials for Electrochemical Devices: Templating Effect of Clays". Journal of Nanoscience and Nanotechnology 8, n.º 4 (1 de abril de 2008): 1741–50. http://dx.doi.org/10.1166/jnn.2008.18238.
Texto completo da fonteDamasceno Borges, Daiane, Guillaume Maurin e Douglas S. Galvão. "Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries". MRS Advances 2, n.º 9 (2017): 519–24. http://dx.doi.org/10.1557/adv.2017.181.
Texto completo da fonteMisenan, Muhammad Syukri Mohamad, Rolf Hempelmann, Markus Gallei e Tarik Eren. "Phosphonium-Based Polyelectrolytes: Preparation, Properties, and Usage in Lithium-Ion Batteries". Polymers 15, n.º 13 (30 de junho de 2023): 2920. http://dx.doi.org/10.3390/polym15132920.
Texto completo da fonteAmiraslanova, A. J., K. N. Babanly, S. Z. Imamaliyeva, I. J. Alverdiyev e Yu A. Yusibov. "PHASE RELATIONS IN THE Ag8SiS6–Ag8SiTe6 SYSTEM AND CHARACTERIZATION OF SOLID SOLUTIONS". Azerbaijan Chemical Journal, n.º 2 (19 de junho de 2023): 169–77. http://dx.doi.org/10.32737/0005-2531-2023-2-169-177.
Texto completo da fonteNaseem, Majid, Sadia Anjum, Saima Saima, Ghulam Baqar, Mahpara Jabeen, Iqra Nawaz, Muhammad Imran, Usama Aslam e Muhammad Ibrhim. "Current Advances with Potential Role of Nanotechnology in Generation of Fuel Cells and Solar Cell Batteries". Scholars Bulletin 10, n.º 04 (17 de abril de 2024): 136–42. http://dx.doi.org/10.36348/sb.2024.v10i04.004.
Texto completo da fonteAnbarasu, R., B. Kavitha, H. Aswathaman e N. Senthil Kumar. "Studies on Polyvinyl Pyrrolidone (PVP) and Tapioca-Based Polymer Nanocomposites for Solid Polymer Electrolyte Applications in Batteries". Journal of Nanoscience and Technology 10, n.º 1 (1 de fevereiro de 2025): 986–89. https://doi.org/10.30799/jnst.352.25100101.
Texto completo da fonteWalanda, Daud K. "KINETIC TRANSFORMATION OF SPINEL TYPE LiMnLiMn2O4 INTO TUNNEL TYPE MnO2". Indonesian Journal of Chemistry 7, n.º 2 (20 de junho de 2010): 117–20. http://dx.doi.org/10.22146/ijc.21685.
Texto completo da fonteYakubovich, Olga, Nellie Khasanova e Evgeny Antipov. "Mineral-Inspired Materials: Synthetic Phosphate Analogues for Battery Applications". Minerals 10, n.º 6 (7 de junho de 2020): 524. http://dx.doi.org/10.3390/min10060524.
Texto completo da fonteDíez, Eduardo, Cinthya Redondo, José María Gómez, Ruben Miranda e Araceli Rodríguez. "Zeolite Adsorbents for Selective Removal of Co(II) and Li(I) from Aqueous Solutions". Water 15, n.º 2 (9 de janeiro de 2023): 270. http://dx.doi.org/10.3390/w15020270.
Texto completo da fonteBaker, Daniel R., Mark W. Verbrugge e Allan F. Bower. "Thermodynamics, stress, and Stefan-Maxwell diffusion in solids: application to small-strain materials used in commercial lithium-ion batteries". Journal of Solid State Electrochemistry 20, n.º 1 (23 de agosto de 2015): 163–81. http://dx.doi.org/10.1007/s10008-015-3012-7.
Texto completo da fonteStoneham, Marshall, John Harding e Tony Harker. "The Shell Model and Interatomic Potentials for Ceramics". MRS Bulletin 21, n.º 2 (fevereiro de 1996): 29–35. http://dx.doi.org/10.1557/s0883769400046273.
Texto completo da fonteAl-Kutubi, Hanan, Swapna Ganapathy e Marnix Wagemaker. "Space Charges in Solid State Batteries: Friend, Foe or Fantasy?" ECS Meeting Abstracts MA2023-02, n.º 8 (22 de dezembro de 2023): 3442. http://dx.doi.org/10.1149/ma2023-0283442mtgabs.
Texto completo da fonteTaghikhani, Kasra, Peter J. Weddle, William Huber, Robert M. Hoffman, Mohsen Asle Zaeem, John R. Berger e Robert J. Kee. "Electro-Chemo-Mechanical Modeling of Composite Cathodes in All-Solid-State Li-Ion Batteries". ECS Meeting Abstracts MA2024-01, n.º 38 (9 de agosto de 2024): 2290. http://dx.doi.org/10.1149/ma2024-01382290mtgabs.
Texto completo da fonte