Literatura científica selecionada sobre o tema "Batteries solides"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Batteries solides".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Batteries solides"

1

Alcaraz, Lorena, Carlos Díaz-Guerra, Joaquín Calbet, María Luisa López e Félix A. López. "Obtaining and Characterization of Highly Crystalline Recycled Graphites from Different Types of Spent Batteries". Materials 15, n.º 9 (30 de abril de 2022): 3246. http://dx.doi.org/10.3390/ma15093246.

Texto completo da fonte
Resumo:
Spent batteries recycling is an important way to obtain low-cost graphite. Nevertheless, the obtaining of crystalline graphite with a rather low density of defects is required for many applications. In the present work, high-quality graphites have been obtained from different kinds of spent batteries. Black masses from spent alkaline batteries (batteries black masses, BBM), and lithium-ion batteries from smartphones (smartphone black masses, SBM) and electric and/or hybrid vehicles (lithium-ion black masses, LBM) were used as starting materials. A hydrometallurgical process was then used to obtain recycled graphites by acidic leaching. Different leaching conditions were used depending on the type of the initial black mass. The final solids were characterized by a wide set of complementary techniques. The performance as Li ion batteries anode of the sample with better structural quality was assessed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mamatkarimov, O., B. Uktamaliyev e A. Abdukarimov. "PREPARATION OF POLY (METHYL METHACRYLATE)-BASED POLYMER ELECTROLYTES FOR SOLID-STATE FOR Mg-ION BATTERIES". SEMOCONDUCTOR PHYSICS AND MICROELECTRONICS 3, n.º 4 (30 de agosto de 2021): 16–19. http://dx.doi.org/10.37681/2181-1652-019-x-2021-4-2.

Texto completo da fonte
Resumo:
It is known that the new metal-based solid polymer electrolyte batteries are characterized by high energy and power density, low cost, simplicity of manufacturing technology and long-term non-discharge. Therefore, the technology of their preparation is considered in this study
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Maier, Joachim, e Ute Lauer. "Ionic Contact Equilibria in Solids-Implications for Batteries and Sensors". Berichte der Bunsengesellschaft für physikalische Chemie 94, n.º 9 (setembro de 1990): 973–78. http://dx.doi.org/10.1002/bbpc.19900940918.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kanno, Ryoji, Satoshi Hori, Keisuke Shimizu e Kazuhiro HIkima. "(Invited) Development and New Perspectives in Lithium Ion Conductors and Solid-State Batteries". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1085. https://doi.org/10.1149/ma2024-0281085mtgabs.

Texto completo da fonte
Resumo:
All-solid-state batteries, which consist entirely of solid components, are being developed as the energy storage devices for the next generation. In the presentation, after showing the history, current status, and challenges of solid-state battery development, our research on the solid-state electrolyte exploration and solid-state battery development will be presented. We investigated the solid electrolytes to improve the performance of solid-state batteries, and the battery reactions using model-type solid-state batteries. We have explored new solid electrolytes and found a material Li10GeP2S12(LGPS) with conductivity comparable to or higher than the ionic conductivity of Li-based organic solvent electrolytes. It was found that the power density of batteries can be dramatically increased by utilizing the solid-electrolytes of superior ionic conductivity. Based on the LGPS material developments, the intrinsic advantages of the solid-state battery, fast ion diffusion mechanism in the LGPS solids, and challenges of developing the technology needed to produce practical batteries will be discussed. We have developed model battery system based on the idea that battery reactions can be observed more in detail when batteries are solid-state. Battery reactions proceed at the electrode/electrolyte interface. It is not well understood how the electrochemical reactions at the interface and the changes in the electronic structure of the electrode proceed during charging and discharging. In solid-state batteries, the electrode-electrolyte interface can be considered as a heterojunction interface in semiconductors. Spectroscopic methods can reveal the electronic structure of the battery during charge-discharge reactions. As solid-state batteries become practical devices, the battery science and technology will also progress.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Alcántara, Ricardo, Carlos Pérez-Vicente, Pedro Lavela, José L. Tirado, Alejandro Medina e Radostina Stoyanova. "Review and New Perspectives on Non-Layered Manganese Compounds as Electrode Material for Sodium-Ion Batteries". Materials 16, n.º 21 (30 de outubro de 2023): 6970. http://dx.doi.org/10.3390/ma16216970.

Texto completo da fonte
Resumo:
After more than 30 years of delay compared to lithium-ion batteries, sodium analogs are now emerging in the market. This is a result of the concerns regarding sustainability and production costs of the former, as well as issues related to safety and toxicity. Electrode materials for the new sodium-ion batteries may contain available and sustainable elements such as sodium itself, as well as iron or manganese, while eliminating the common cobalt cathode compounds and copper anode current collectors for lithium-ion batteries. The multiple oxidation states, abundance, and availability of manganese favor its use, as it was shown early on for primary batteries. Regarding structural considerations, an extraordinarily successful group of cathode materials are layered oxides of sodium, and transition metals, with manganese being the major component. However, other technologies point towards Prussian blue analogs, NASICON-related phosphates, and fluorophosphates. The role of manganese in these structural families and other oxide or halide compounds has until now not been fully explored. In this direction, the present review paper deals with the different Mn-containing solids with a non-layered structure already evaluated. The study aims to systematize the current knowledge on this topic and highlight new possibilities for further study, such as the concept of entatic state applied to electrodes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mauger, Julien, Paolella, Armand e Zaghib. "Building Better Batteries in the Solid State: A Review". Materials 12, n.º 23 (25 de novembro de 2019): 3892. http://dx.doi.org/10.3390/ma12233892.

Texto completo da fonte
Resumo:
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O2, and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cheong, Do Sol, e Hyun-Kon Song. "Organic Ice Electrolytes for Lithium Batteries". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1100. https://doi.org/10.1149/ma2024-0281100mtgabs.

Texto completo da fonte
Resumo:
Solid-state ionic conductors are being actively developed for batteries employing lithium electrochemistry. Lithium battery cells based on solid electrolytes are believed to be free from concerns found in conventional lithium ion batteries (LIBs) based on liquid electrolytes. Solid electrolytes are expected to be non-volatile and nonflammable without electrolyte leakage, suppressing dendritic growth of lithium metal. The benefits of solid electrolytes come from their immobile and mechanically hard state distinguished from the mobile and fluidic state of liquid electrolytes. Solid electrolytes popularly employed for lithium batteries, including inorganic oxides and sulfides as well as organic polymers, are classified as network solids (e.g., Li7La3Zr2O12, garnet in oxides and Li6PS5Cl, argyrodite in sulfides) based on covalent and/or ionic bonds. A building unit of network solids, the atomic ratio of which is described by chemical formula, is repeatedly extended to form a continuous network throughout the material. On the other hand, the possibility of molecular solid electrolytes, the phases of which are determined by the inter-molecular interactions, has rarely been suggested. Recently, an example of molecular solid electrolyte was presented by Guo, Z. et al. (2019). When 1 m Li2SO4 (aq) was frozen, the ionic conductivity of the solid ice electrolyte was 0.1 mS cm-1 at -17 oC. Such an ionically conductive ice electrolyte was not easily expected from the practical wisdom in LIB field: LIBs do not work when their electrolytes are frozen. For example, carbonate-based mixture electrolyte, ED(=1 M LiPF6 in ethylene carbonate/dimethyl carbonate) was frozen at -30oC and the cell used that electrolyte could not delivered any charging/discharging capacity at all. In contrast, each solvent of components of ED, a cyclic carbonate (ethylene carbonate, EC) and a linear carbonate (dimethyl carbonate, DMC) were theoretically expected to have Li+-conductive channels in their frozen crystal structures. Experimentally, the high-t Li+ (Li+ transference number) frozen-solid electrolytes (EC or DMC based single-solvent electrolyte) successfully drove lithium metal batteries below their freezing points (fp) even if their mixture did not work as an ionic conductor in its frozen state. Interestingly, the t Li+ of the electrolytes sharply increased below fp, declaring that the conduction mechanism changed from vehicular conduction to hopping conduction of Li+ through crystal structure with low diffusion energy barrier (0.28 eV at -20 oC vs. 0.32 eV of LLZO at RT). From the lessons from the carbonates, we proposed a cyclic sulfone (sulfolane, SL) as another solvent for molecular-solid electrolytes. The frozen SL electrolyte at -30 oC allowed its LMB cells to deliver the capacity equivalent to that of a conventional carbonate liquid electrolyte that is not frozen at the same -30 oC (EC+EMC where EMC = ethylmethyl carbonate). More importantly, the LMB cells with the frozen SL was longer-lasting than the liquid cells. The frozen organic ice electrolyte effectively and totally suppressed dendritic growth of lithium metal by utilizing its own mechanical hardness, high t Li+ and interface-specific anion-derived SEI layer.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kim, Sangtae, Shu Yamaguchi e James A. Elliott. "Solid-State Ionics in the 21st Century: Current Status and Future Prospects". MRS Bulletin 34, n.º 12 (dezembro de 2009): 900–906. http://dx.doi.org/10.1557/mrs2009.211.

Texto completo da fonte
Resumo:
AbstractThe phenomenon of ion migration in solids forms the basis for a wide variety of electrochemical applications, ranging from power generators and chemical sensors to ionic switches. Solid-state ionics (SSI) is the field of research concerning ionic motions in solids and the materials properties associated with them. Owing to the ever-growing technological importance of electrochemical devices, together with the discoveries of various solids displaying superior ionic conductivity at relatively low temperatures, research activities in this field have grown rapidly since the 1960s, culminating in “nanoionics”: the area of SSI concerned with nanometer-scale systems. This theme issue introduces key research issues that we believe are, and will remain, the main research topics in nanoionics and SSI during the 21st century. These include the application of cutting-edge experimental techniques, such as secondary ion mass spectroscopy and nuclear magnetic resonance, to investigate ionic diffusion in both bulk solids and at interfaces, as well as the use of atomic-scale modeling as a virtual probe of ionic conduction mechanisms and defect interactions. We highlight the effects of protonic conduction at the nanometer scale and how better control of interfaces can be employed to make secondary lithium batteries based on nanoionics principles. Finally, in addition to power generation and storage, the emergence of atomic switches based on cation diffusion shows great promise in developing next-generation transistors using SSI.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ota, Hiroki. "(Invited) Application of Liquid Metals in Battery Technology". ECS Meeting Abstracts MA2024-02, n.º 35 (22 de novembro de 2024): 2502. https://doi.org/10.1149/ma2024-02352502mtgabs.

Texto completo da fonte
Resumo:
Stretchable devices have many potential applications, including wearable electronics, robotics, and health monitoring. These mechanically adaptable devices and sensors can seamlessly integrate with electronics on curved or soft surfaces. Given that liquids are more deformable than solids, sensors and actuators utilizing liquids encased in soft templates as sensing elements are particularly suited for these applications. Such devices, leveraging ultra-flexible conductive materials, are referred to as stretchable electronics. Liquid metals (LMs) have emerged as one of a leading material in this field. In recent years, interest in liquid metals has surged, notably in flexible and soft electronics. When considering liquid metals, mercury often comes to mind due to its fluid state at room temperature. However, its high toxicity precludes its use in wearable technology. Instead, gallium-based liquid metals are preferred due to their safety in such applications. Gallium alone melts at about 30°C, but an alloy of 75% gallium and 25% indium lowers the melting point to 15°C. Adding 10% tin further reduces it to -19°C. These gallium-based liquid metals, which form low-viscosity eutectic alloys, have extremely low melting points and high biocompatibility. In addition, they rapidly form a thin oxide layer on their surface, which complicates patterning on substrates. To address this, metal nanoparticles like nickel can be blended using ultrasonic probing to create a malleable paste. These materials are still under research to explore additional functionalities. Liquid metals are particularly promising for self-healing materials and advanced wiring technologies for sensors and smart devices in stretchable electronics. More recently, their application in battery technologies in addition to sensors and wiring has been proposed. With ongoing advancements in flexible and stretchable electronics, the flexibility of lithium-ion batteries, essential for powering these devices, is also under investigation. This presentation discusses research on flexible battery electrodes using liquid metal and on materials for stretchable battery packages. In our first study, liquid metal served as a battery electrode, integrating the reaction and current collecting layers into a single process, thus simplifying manufacturing. However, this integration results in lower conductivity compared to traditional two-layer electrodes. By employing materials such as Li4Ti5O12 (LTO) or Li2TiS3 (LTS) with liquid metal, we developed a high-conductivity, printable liquid metal electrode ink that combines both functions. In a second application, liquid metal was used as an package for stretchable batteries. Recent studies on batteries have primarily focused on enhancing their stability and lifespan, with less attention to packaging. Conventionally, aluminum laminate film is used to prevent moisture and gas permeation in highly deformable batteries. Our study introduced a novel approach using a layer-by-layer technique to apply a thin liquid metal coating on a gold-coated thermoplastic polyurethane film, resulting in a stretchable packaging film with excellent gas barrier properties. This innovation not only enhances the battery's operational stability but also allows it to function reliably in atmospheric condition. The applications for liquid metals are extensive and hold promise for further exploration in various fields.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yang, Jinlin, Jibiao Li, Wenbin Gong e Fengxia Geng. "Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature". Proceedings of the National Academy of Sciences 118, n.º 38 (14 de setembro de 2021): e2111549118. http://dx.doi.org/10.1073/pnas.2111549118.

Texto completo da fonte
Resumo:
Rechargeable magnesium batteries represent a viable alternative to lithium-ion technology that can potentially overcome its safety, cost, and energy density limitations. Nevertheless, the development of a competitive room temperature magnesium battery has been hindered by the sluggish dissociation of electrolyte complexes and the low mobility of Mg2+ ions in solids, especially in metal oxides that are generally used in lithium-ion batteries. Herein, we introduce a generic proton-assisted method for the dissociation of the strong Mg–Cl bond to enable genuine Mg2+ intercalation into an oxide host lattice; meanwhile, the anisotropic Smoluchowski effect produced by titanium oxide lattices results in unusually fast Mg2+ diffusion kinetics along the atomic trough direction with a record high ion conductivity of 1.8 × 10−4 S ⋅ cm−1 on the same order as polymer electrolyte. The realization of genuine Mg2+ storage and fast diffusion kinetics enabled a rare high-power Mg-intercalation battery with inorganic oxides. The success of this work provides important information on engineering surface and interlayer chemistries of layered materials to tackle the sluggish intercalation kinetics of multivalent ions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Batteries solides"

1

Chable, Johann. "Électrolytes solides fluorés pour batteries tout solide à ions F-". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0276/document.

Texto completo da fonte
Resumo:
Ce travail porte sur la synthèse, la mise en forme et la caractérisation desolutions solides de type tysonite RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr). Dans unpremier temps, une démarche d’étude rigoureuse est mise en place pour la solution solide ditede référence, La1-xBaxF3-x. Les synthèses menées à l’état solide aboutissent à une maîtrise dela composition chimique et à l'établissement de lois de variations des paramètres structuraux.Une meilleure compréhension de l’influence de la structure sur la mobilité des ions F- estégalement acquise. L’influence du frittage dans l’obtention de bonnes valeurs de conductivitéionique est également à souligner. Dans un second temps, les effets de la nanostructurationpar mécanobroyage sur les propriétés de conductivité sont évalués. L’utilisation de laméthodologie des plans d’expériences mène à la mise au point des réglages optimums debroyage. Il apparaît alors que la synthèse des électrolytes peut être accélérée et mise àl’échelle tout en gardant des valeurs optimales de conductivité. Enfin, la démarche déterminéeest appliquée à d'autres solutions solides de type tysonite et à la recherche du conducteurionique le plus performant. Si les composés issus de la substitution Ce/Sr ou encore Sm/Casemblent les plus prometteurs, la plus grande stabilité chimique de la solution solide La1-xSrxF3-x est le compromis idéal pour l'utiliser comme électrolyte solide lors des mesuresélectrochimiques des batteries
This work deals with the synthesis, shaping and characterization of RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr) tysonite-type solid solutions. In a first part, onemeticulous approach has been set up for La1-xBaxF3-x solid solution, chosen as a reference.The solid-state synthesis of these materials led to a better knowledge of their chemicalcomposition (Vegard’s laws) and of the structure-ionic mobility correlations. The impact ofthe sintering process on the ionic conductivity is also highlighted. In a second part, the effectsof the nanostructuration conducted by ball-milling of the microcrystalline samples areevaluated. The use of the Design of Experiments methodology led to identify the optimummilling conditions. It appears that the synthesis of electrolytes can be sped- and scaled-up,while keeping high ionic conductivity properties. At last, this approach is applied on othertysonite-type solid solutions, to look for the best electrolyte. The Ce/Sr and Sm/Casubstitutions generate very promising ionic conductors but not really (electro)chemicallystable compounds. A compromise has been found with the choice of the La1-xSrxF3-x solidsolution as the FIB electrolyte for the electrochemical performances tests, regarding its higherchemical stability
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Leclercq, Florent. "Étude d'électrolytes hybrides solides destinés aux batteries lithium". Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET068.

Texto completo da fonte
Resumo:
Au cours de cette thèse, nous avons comparé deux voies d’élaboration d’un électrolyte solide hybride composé d’un mélange de deux polymères (PEO et PVDF-HFP), d’un sel de lithium (LiTFSI), et d’un réseau de silice formé in situ par voie sol-gel et fonctionnalisé par des groupements imidazolium Dans un premier temps, nous avons utilisé le procédé de coulée-évaporation pour étudier l’influence des différents constituants sur les propriétés physico-chimiques et électrochimiques. Des conductivités de 10⁻⁴ S/cm à 80°C ont été atteintes, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/10 à la même température. Le procédé d’extrusion électro-assistée a ensuite été utilisé afin de fabriquer un squelette de nanofibres hybrides PVDF-HFP/silice (fonctionnalisée ou non) dont la porosité est remplie par un mélange PEO/LiTFSI. L’architecture particulière de l’électrolyte ainsi fabriqué permet de découpler les propriétés de conduction des propriétés mécaniques. Les conductivités obtenues à 80°C sont de 5.10⁻⁴ S/cm, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/2 à la même température. Les mêmes squelettes hybrides « électrospinnés » ont été évalués en tant que séparateur pour des électrolytes aqueux super-concentrés (également appelés water-in-salt). Leurs excellentes propriétés de mouillage et de rétention permettent d’assurer le fonctionnement d’une batterie LiMn₂O₄/TiO₂ à des régimes atteignant 10C tout en diminuant la quantité d’électrolyte nécessaire
This work focuses on the comparison of two processes for the elaboration of a solid hybrid electrolyte made of a mix of two polymers (PEO and PVDF-HFP), a lithium salt (LiTFSI), and of a silica network made in situ via a sol-gel method and functionalized with imidazolium groups. At first, the influence of the different components on the physicochemical and electrochemical properties of electrolytes made by dry casting is studied. Conductivities of 10⁻⁴ S/cm at 80 °C allow us to cycle LiFePO₄/Li batteries at a C/10 rate at the same temperature. A skeleton of hybrid PVDF-HFP/silica (functionalized or not) nanofibers is synthesized by electrospinning and its porosity is filled with a PEO/LiTFSI mix. The particular architecture of this type of electrolyte enables the decoupling of conduction and mechanical properties. Conductivities of 5.10-4 S/cm at 80 °C allow the cycling of LiFePO₄/Li batteries at a C/2 rate at the same temperature. The same electrospun hybrid membranes are evaluated as separators for hybrid water-in-salt electrolytes. Thanks to their excellent wetting and retention properties, LiMn₂O₄/TiO₂ batteries are cycled at a 10C rate with a low quantity of electrolyte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Xu, Yanghai. "Matériaux de cathode et électrolytes solides en sulfures pour batteries au lithium". Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S094/document.

Texto completo da fonte
Resumo:
Les batteries lithium-air et Li-S sont des techniques prometteuses pour un stockage efficace d’énergie électrochimique. Les principaux défis sont de développer un électrolyte solide à haute conductivité ionique et des cathodes efficaces. Dans ce travail, des aérogels de carbone conducteurs avec une double porosité ont été synthétisés en utilisant la méthode de sol-gel. Ils ont été utilisés comme cathode dans des batteries lithium-air. Ces cathodes peuvent fournir deux types de canaux pour le stockage de produits de décharge, facilitant la diffusion gaz-liquide et réduisant ainsi le risque de colmatage. Presque 100 cycles été obtenus avec une capacité de 0,4 mAh et une densité de courant de 0,1 mA/cm². Pour le développement d'électrolyte solide stable et conducteur, les sulfures, en particulier Li4SnS4 et son dérivé Li10SnP2S12 ont été particulièrement étudiés. Ces composés ont été synthétisés en utilisant une technique en deux étapes comprenant la mécanosynthèse et un traitement thermique à température relativement basse qui a été optimisé afin d'améliorer la conductivité ionique. La meilleure conductivité obtenue est de 8,27×10-4 S / cm à 25°C et ces électrolytes présentent une grande stabilité électrochimique sur une large gamme de voltage de 0,5 à 7V. Les couches minces ont également été déposées en utilisant la technique de pulvérisation cathodique, avec en général une conductivité ionique améliorée. La performance des batteries Li-S assemblées avec ces électrolytes massifs doit être améliorée, en particulier en améliorant la conductivité ionique de l'électrolyte
Lithium-air and Li-S batteries are promising techniques for high power density storage. The main challenges are to develop solid electrolyte with high ionic conductivity and highly efficient catalyzed cathode. In this work, highly conductive carbon aerogels with dual-pore structure have been synthesized by using sol-gel method, and have been used as air cathode in Lithium-air batteries. This dual- pore structure can provide two types of channels for storing discharge products and for gas-liquid diffusion, thus reducing the risk of clogging. Nearly 100 cycles with a capacity of 0.4mAh at a current density of 0.1 mA cm-2 have been obtained. For developing stable and highly conductive solid electrolyte, sulfides, especially Li4SnS4 and its phosphorous derivative Li10SnP2S12 have been particularly investigated. These compounds have been synthesized by using a two-step technique including ball milling and a relatively low temperature heat treatment. The heat treatment has been carefully optimized in order to enhance the ionic conductivity. The best-obtained conductivity is 8.27×10-4 S/cm at 25°C and the electrolytes show high electrochemical stability over a wide working range of 0.5 – 7V. Thin films have also been deposited by using the sputtering technique, with generally improved ionic conductivity. The performance of the Li-S batteries assembled with these bulk electrolytes is still to be improved, particularly by improving the ionic conductivity of the electrolyte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Issa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.

Texto completo da fonte
Resumo:
Les problématiques engendrées par l’extraction et l’utilisation intensives des ressources fossiles ont forcé l’humanité à se tourner vers le développement d’énergies renouvelables et de véhicules électriques. Cependant, ces technologies doivent être couplées à des moyens de stockage de l’énergie efficaces pour exploiter leur potentiel. Les systèmes embarquant une anode de lithium métallique sont particulièrement intéressants car ils présentent une densité d’énergie élevée. Cependant, cette technologie souffre de la formation de dendrites pouvant déclencher des courts-circuits provoquant l’explosion du dispositif. Ainsi, de nombreux efforts ont été consacrés à l’élaboration d’électrolytes solides polymères (SPE) à base de POE permettant de constituer une barrière qui bloque la croissance dendritique tout en préservant les propriétés de conduction ionique. Cependant, la conductivité ionique des SPE à base de POE décroît fortement avec la température. A l’heure actuelle, les meilleurs SPE de la littérature nécessiteraient de fonctionner à 60 °C, ce qui signifie qu’une partie de l’énergie de la batterie sera détournée de son utilisation pour maintenir cette température. Ainsi, l’objectif principal de ce travail de thèse est de concevoir un SPE permettant le fonctionnement de la technologie de batterie au lithium métal à température ambiante. Ces SPE doivent présenter une conductivité ionique élevée à température ambiante (≈ 10-4 S.cm-1) et des propriétés mécaniques permettant l’inhibition du phénomène de croissance dendritique. Pour cela, les objectifs du projet sont focalisés sur le développement de nouveaux SPE nanocomposites et hybrides
The problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jeanne-Brou, Roselyne. "Propriétés de transport ionique dans les électrolytes polymères solides anisotropes et isotropes". Thesis, Université Grenoble Alpes, 2022. http://www.theses.fr/2022GRALI057.

Texto completo da fonte
Resumo:
Propriétés de transport ionique dans les électrolytes polymères solides anisotropes et isotropes.Les électrolytes polymères solides (SPEs) sont prometteurs pour remplacer l'électrolyte liquide inflammable conventionnel des batteries et évoluer vers un système tout solide comprenant une électrode négative en lithium (Li) métal. En effet, ils peuvent combiner des propriétés mécaniques élevées limitant la croissance des dendrites de Li et une conductivité ionique suffisante pour l'application. De nombreux SPEs ont été étudiés à base de Poly(oxyde d'éthylène) (PEO), le matériau de référence, complexé avec un sel de Li (comme le LiTFSI) tels que les composites (PEO mélangés à des nanoparticules), les copolymères à blocs neutres et fonctionnalisés, les électrolytes réticulés. Cependant, leurs conductivités ioniques sont généralement inférieures à celle de l'homopolymère de PEO au-dessus de sa température de fusion (à environ 55 - 60 °C). Également, il a été largement reporté dans la littérature un effet anisotropique en conductivité pour l’électrolyte d’homopolymère de PEO, c’est-à-dire selon le plan longitudinal (//) ou transverse (Ʇ) et sous des champs extérieurs (élongation mécanique, champ électromagnétique, etc.). En conséquence, pour tenter d'optimiser les SPEs pour l'application, il est nécessaire d'étudier les propriétés de transport ionique (conductivité ionique, nombre de transport et coefficient de diffusion) en fonction de la nature du SPE (de l'homopolymère aux copolymères à blocs fonctionnalisés).Ce travail de thèse porte d'abord sur l’étude des propriétés de transport (conductivité ionique, mais aussi nombre de transport et diffusion) selon les directions principales de l’espace dans le plan (//) ou au travers du plan (Ʇ). Des séries de caractérisations physico-chimiques et électrochimiques ont été réalisées pour étudier ces paramètres du transport ionique. Le nombre de transport et la diffusion montrent une évolution avec la conductivité des SPEs selon les orientations // vs. Ʇ;. De plus, des simulations sous COMSOL ont permis de modéliser en 2 dimensions (2D) les gradients de concentration en fonction de la géométrie (// vs. & Ʇ). Pour la diffusion, un modèle analytique 1D a été développé dans le cadre de la méthodologie de John Newman pour établir le modèle des relaxations expérimentales du potentiel en fonction du temps (//). L'impact de la conformation de la chaîne via l'allongement de la chaîne polymère des SPEs sur la conductivité ionique a été évalué grâce à la conception d’une instrumentation spécifique permettant de coupler les mesures d'impédance et d'allongement en atmosphère contrôlée d'argon. Cet instrument a été conçu et réalisé par une collaboration entre le LEPMI et l'IUT de Chambéry / Le-Bourget-du-Lac.Une seconde partie du travail de thèse concerne les caractérisations physico-chimiques, matériaux et électrochimiques de SPE à conduction unipolaire Li+ à base de polymères hybrides réticulés synthétisés par l'ICR (Aix-Marseille Université). En particulier, une méthodologie basée sur la soustraction des spectres d'impédance a été développée pour déterminer les principales contributions du transport ionique afin de les corréler avec la nanostructure des SPE analysée par diffusion des rayons X aux petits angles (SAXS) au LLB (Gif Sur Yvette). Enfin, des batteries au Li métal ont été assemblées et cyclées comme preuve de concept pour établir les performances avec une électrode positive in-situ LiFePO4
Ionic transport properties in anisotropic and isotropic solid polymer electrolytesSolid Polymer Electrolytes (SPEs) are promising to replace the conventional flammable liquid electrolyte in batteries to move toward an all-solid-state system comprising a lithium (Li) metal negative electrode. Indeed, they can combine high mechanical properties limiting Li dendrite growth and ionic conductivity high enough for the application. Many materials have been investigated mostly based on Poly(ethylene oxide) (PEO), the reference material, complexed with a Li salt (such as LiTFSI) such as composites (PEO mixed with nanoparticles), neutral and functionalized block copolymers, and crosslinked electrolytes. However, their ionic conductivities are generally below that of the PEO homopolymer above its melting temperature (at about 55 – 60 °C). In addition, it has been mainly reported in the literature an anisotropic effect in ionic conductivity for PEO homopolymer electrolyte, i.e. according to the in-plane (//) and through-plane (Ʇ) and under a series of external fields (mechanical stretching, electromagnetic field, etc.). Therefore, in an attempt to optimize SPE for the application, it is necessary to investigate the isotropic and anisotropic ionic transport properties corresponding to the ionic conductivity, the transference number, and the diffusion coefficient depending on the SPE nature (from homopolymer to functionalized block copolymer electrolytes).This thesis work focuses first on the study of ionic transport properties (ionic conductivity, but also transference number, and diffusion) according to the two main directions of space (// vs. Ʇ). Series of physico-chemical and electrochemical characterizations were performed to study those ionic transport parameters. The transference number and the diffusion evolve with the ionic conductivity of the SPEs according to the orientations // vs. Ʇ;. In addition, simulations under COMSOL have permit to model in 2-dimensions (2D) the concentration gradients depending on the cell geometry (// vs. & Ʇ). For the diffusion, a 1D analytical model was developed within the framework of John Newman's methodology to establish the model of the experimental relaxations of the potential as a function of time (//). The impact of the chain conformation via polymer chain elongation of the SPEs on the ionic conductivity was also investigated thanks to a lab-made specific instrumentation enabling the coupling of impedance measurements and mechanical elongation in a controlled inert atmosphere. This instrument was designed and realized by a collaboration between LEPMI and the IUT of Chambéry / Le-Bourget-du-Lac.The second part of the thesis concerns the physico-chemical, materials and electrochemical characterizations of single-ion conducting SPEs based on hybrid crosslinked SPEs synthesized by ICR (Aix-Marseille University). In particular, a methodology based on the subtraction of impedance spectra was developed to determine the main ionic transport contributions and to correlate them with the SPEs’ nanostructuration analyzed by small-angle X-ray scattering (SAXS) carried out by LLB (Gif Sur Yvette). At last, Li metal-based batteries were assembled and cycled as a proof-of-concept to establish the performances with an in-situ LiFePO4 based positive electrode/cathode
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Castillo, Adriana. "Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX107/document.

Texto completo da fonte
Resumo:
L’un des enjeux pour le développement des batteries tout-solide est d’augmenter la conductivité ionique des électrolytes solides. Le sujet de la thèse porte sur l’étude de deux types de matériaux d’électrolytes solides inorganiques cristallins: les Grenat Li7- 3xAlxLa3Zr2O12 (LLAZO) et les Nasicon Li1.15- 2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). L’objectif de cette étude est de comprendre dans quelle mesure les propriétés conductrices des matériaux étudiés sont impactées par des modifications structurales générées soit par un procédé de traitement particulier, soit par une modification de la composition chimique, et ce grâce au croisement des données structurales acquises par diffraction des rayons X (DRX) et Résonance Magnétique Nucléaire (RMN) MAS avec des données de dynamique des ions déduites de mesures de RMN en température et de spectroscopie d’impédance électrochimique (SIE).Les poudres ont été synthétisées après optimisation des traitements thermiques par méthode solide-solide ou solgel. La densification des pastilles utilisées pour les mesures de conductivité ionique par SIE a été réalisée par la technique de frittage Spark Plasma Sintering (SPS).Dans le cas des grenats LLAZO, l’originalité de notre travail est d’avoir montré qu’un traitement de frittage par SPS, au-delà de la densification attendue des pastilles, engendre également des modifications structurales qui ont des conséquences directes sur la mobilité des ions lithium dans le matériau et par conséquent sur la conductivité ionique. Une augmentation franche de la dynamique microscopique des ions lithium après frittage par SPS a en effet été observée par des mesures en température de RMN de 7Li et le suivi des constantes de relaxation.La deuxième partie de l’étude constitue un travail exploratoire sur la substitution de Li+ par Mg2+ dans LMZYPO. Nous avons ainsi étudié les propriétés de conduction ionique de ces composés mixtes Li/Mg, en parallèle d’un examen minutieux des phases cristallines formées. Nous avons notamment montré que la présence de Mg2+ favorise la formation des phases β’ (P21/n) et β (Pbna) moins conductrices ce qui explique la diminution de la conductivité ionique avec le taux de substitution de Li+ par Mg2+ observée dans ces matériaux de type Nasicon.Nos travaux soulignent donc l’importance primordiale des effets de structure sur les propriétés de matériaux d’électrolytes solides de type céramique
One of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Saha, Sujoy. "Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries". Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.

Texto completo da fonte
Resumo:
Les besoins croissants en stockage de l’énergie exigent une amélioration continue des batteries lithium-ion. Le mécanisme de redox anionique qui permet d’augmenter la densité d’énergie des électrodes positives mais est associé à divers inconvénients (hystérésis et décroissance de tension, cinétique lente, etc.) qui restent à résoudre. De plus, la sécurité des batteries lithium-ion peut être améliorée en concevant des batteries tout-solide. Dans cette thèse, nous nous sommes d'abord concentrés sur le développement de nouveaux électrolytes solides à base d'oxydes pour des applications dans les batteries tout-solide. Nous avons exploré l’influence du désordre structural sur conductivité ionique des électrolytes solides et montré comment il était possible d’augmenter la conductivité en stabilisant à température ambiante les phases désordonnées présentes à haute température. Ensuite, nous avons conçu des électrodes à base de sulfures riches en Li présentant du rédox anionique, qui en outre présentent une excellente réversibilité. Ainsi, les matériaux d'électrode nouvellement conçus ouvrent une direction possible pour atténuer les problèmes liés au rédox anionique. Enfin, nous avons utilisé les sulfures comme électrode positive dans des batteries tout-solide avec des électrolytes solides à base de sulfures; ces systèmes montrent une excellente cyclabilité, soulignant ainsi l’importance de la compatibilité interfaciale dans les batteries tout-solide
Growing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lacroix-Orio, Laurence. "Phases de Zintl ternaires LixMyM'z(M = Al, Ag, Zn et M' = Al, Ge, Si) : élaboration, analyses structurales et électrochimiques". Montpellier 2, 2006. http://www.theses.fr/2006MON20178.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Poirier, Romain. "Synthèse en solution de sulfures divisés pour les électrolytes de batteries lithium-ion tout solide". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10212.

Texto completo da fonte
Resumo:
Les électrolytes solides sont aujourd’hui considérés comme la clé pour le développement des nouvelles générations de batteries. Deux types d’électrolytes solides ont majoritairement été étudiés, les polymères et les inorganiques, mais leurs performances restent limitées. Une piste prometteuse pour obtenir des électrolytes performants est d’utiliser des particules inorganiques incorporées dans une matrice polymère afin de former un électrolyte hybride. Parmi les matériaux inorganiques possibles, la famille des sulfures (Li3PS4, Li6PS5X avec X= Cl,Br, I) présente des conductivités ioniques très élevées. Cependant, ces matériaux sont généralement obtenus par voie solide menant à des particules micrométriques agrégées. De plus, bien que des synthèses en solution aient été récemment mises en évidence, le potentiel de contrôle de la taille, de la morphologie et de la prévention de leur agrégation n’est pas exploité. L’objectif de cette thèse est de mettre au point une méthodologie de synthèse de sulfures permettant de contrôler la taille, la morphologie et l’agrégation des particules afin de permettre leur incorporation dans une phase polymère. Plusieurs voies de synthèse en solution ont été développées afin de s’affranchir des limitations cinétiques de la synthèse conventionnelle. Ces différentes méthodes de synthèse ont permis d’obtenir un large panel de particules avec des morphologies et des taux d’agrégation différents. L’impact de la taille et de la morphologie des particules sur les performances électrochimiques des électrolytes a été étudié. Les électrolytes les plus performants ont été testés dans des formulations hybrides ainsi que dans des cellules électrochimiques tout solide complètes avec une anode Li/In
Solid electrolytes are now considered to be the key to the development of new generations of batteries. Two types of solid electrolyte have mainly been studied, polymers and inorganics, but their performance remains limited. One promising way of obtaining high-performance electrolytes is to use inorganic particles incorporated into a polymer matrix to form a hybrid electrolyte. Among the possible inorganic materials, the sulfide family (Li3PS4, Li6PS5X with X= Cl, Br, I) has very high ionic conductivities. However, these materials are generally obtained by the solid route, leading to aggregated micrometric particles. Furthermore, although solution syntheses have recently been demonstrated, the potential to control their size, morphology and prevent aggregation has not been exploited. The aim of this thesis is to develop a methodology for the synthesis of sulfides that enables the size, morphology and aggregation of particles to be controlled so that they can be incorporated into a polymer phase. Several solution synthesis routes were developed in order to overcome the kinetic limitations of conventional synthesis. These different synthesis methods have produced a wide range of particles with different morphologies and aggregation rates. The impact of particle size and morphology on the electrochemical performance of the electrolytes was studied. The best performing electrolytes were tested in hybrid formulations as well as in complete all-solid state electrochemical cells with a Li/In anode
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Basso-Bert, Thomas. "Etude de l'élaboration et des performances électrochimiques de séparateurs électrolytiques composites polymère-céramique pour des batteries au Lithium métal". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI036.

Texto completo da fonte
Resumo:
Pour augmenter la densité d’énergie dans les générateurs électrochimiques, deux leviers sont habituellement étudiés : la capacité et le potentiel des matériaux d’électrodes. L’utilisation de lithium (Li) métal comme matériau d’électrode négative répond à ces enjeux puisqu’il présente une très grande capacité gravimétrique (3860 mAh/g) et un potentiel très bas (-3.04 V vs. SHE). Malheureusement, de nombreux phénomènes sont délétères au bon fonctionnement de cette négative idéale, comme la croissance de lithium dendritique au cours du cyclage qui entraine des fins de vie prématurées et des problèmes de sécurité. Une solution est de travailler avec des électrolytes solides, en lieu et place des électrolytes liquides organiques actuels des batteries Li-ion. Ainsi, la recherche se concentre sur le développement de nombreux matériaux d’électrolytes solides, bons conducteurs ionique, stables à bas et haut potentiels, peu coûteux, recyclables, etc. Malgré de grandes avancées que ce soit dans le domaine des électrolytes céramiques ou polymères (voire même des composites des deux), aucun matériau ne semble s’imposer pour l’heure [1].Dans ce contexte, un nouveau concept de membrane hybride polymère/céramique est étudié pour son intégration en batterie au Li métal [2][3]. Nous avons réalisé, par un procédé en voie fondu économique, sans solvant, et aisément extrapolable à l’échelle industrielle, un séparateur constitué d’une monocouche de grains d’électrolyte céramique Li1,3Al0,3Ti1,7(PO4)3 (LATP) jointoyée par un polymère (figure 1.a.). Les grains de LATP percolant de part et d’autre de la membrane apportent la conductivité aux ions Li+ tandis que le polymère à base de Poly(éthylène) assure la tenue mécanique, l’étanchéité aux solvants et sels de lithium, et l’isolation électrique. Le concept de ces membranes est de pouvoir optimiser l’anolyte et le catholyte indépendamment. La conductivité de telles membranes a été étudiée en fonction du pourcentage volumique de LATP (figure 1.b.) et atteint 0,491 mS/cm, à température ambiante, pour une membrane à 50%vol. De plus, le transfert de charge ionique à travers une cellule anolyte / membrane / catholyte a été étudiée par impédance électrochimique. La croissance dendritique en cellule symétrique Li / anolyte / membrane / anolyte / Li a aussi été étudié. Finalement, une batterie à haute densité d’énergie a été réalisée et cyclée à température ambiante.Références :[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)
To boost the energy density of lithium-based accumulators, two levers are commonly studied: the energy density and the potential of electrode materials. The use of Li metal as a negative electrode is undoubtedly an appropriate solution to address these challenges since it has the highest gravimetric capacity (3860mAh/g) and very low reducing potential (-3.04 V vs. Standard Hydrogen Electrode). However, a couple of harmful phenomena prevent from using this ideal negative electrode, such as the dendritic growth during the electrodeposition of Lithium metal when a conventional organic liquid electrolyte is used. As a result, the research has been focusing on the development of numerous solid-state electrolytes (SSE) materials, having high Li+ ionic conductivity, high Li+ transport number, large electrochemical stability window, low cost, recyclable. Despite of breakthroughs for both ceramics or polymers fields (and even composites of both), no room temperature SSE has been developed at industrial scale so far [1].In that context, a new concept [2] of composite polymer/ceramic membrane is studied to be implemented within a Lithium Metal battery. It consists of an electrolytic separator where the Li1.3Al0,3Ti1,7(PO4)3 (LATP) ceramic forms one mono layer of monocrystalline and monodispersed grains bonded with a Poly(ethylene)-based matrix. The LATP grains are the Li+ conducting media allowing the Li+ percolation from one side to another while the Poly(ethylene)-based matrix which is ionically and electronically insulating, and, above all, impermeable to most of conventional Li-ion batteries solvents and Li salts, ensuring both the membrane tightening and very good flexibility (figure 1.a.). Herein, this composite membrane is elaborated via a low cost, solvent free process thanks to extrusion and calendering which can be industrially upscaled unlike the very complex and multistep processes suggested in the literature so far [2,3]. The microstructure of the composite separators was characterized by SEM and X-ray Tomography imaging to better understand the influences of the ceramic, the polymer type, and the elaboration process parameters. The Li+ ionic conductivity of the composite membranes as a function of the ceramic content have been studied by electrochemical impedance spectroscopy (EIS) and a high conductivity of 0.49 mS/cm has been measured at 25°C (50vol% LATP, figure 1.b.). Acting as a chemical barrier, this composite membrane allows the optimization of electrolyte chemistries at both the anode side and the cathode sides. Hence, the ionic charge transfer mechanisms in symmetric electrolyte/membrane/electrolyte systems have been also studied by EIS to determine the driving parameters such as the solvent type, the Li salt type and concentration [4].References:[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)[4] Isaac, J. A., Mangani, L. R., Devaux, D. & Bouchet, R. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Appl. Mater. Interfaces 14, 13158–13168 (2022)
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Batteries solides"

1

1927-, Balkanski Minko, e Commission of the European Communities., eds. Microionics: Solid-state integrable batteries. Amsterdam: North Holland, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

A, Munshi M. Z., ed. Handbook of solid state batteries & capacitors. Singapore: World Scientific Pub., 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

R, Chowdari B. V., e Radhakrishna S, eds. Materials for solid state batteries: Proceedings of the regional workshop Singapore, 2-6 June 1986. Singapore: World Scientific, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Knutz, Boye C. Lithiumfaststofbatterier. Lyngby: Fysisk laboratorium III, Danmarks tekniske højskole, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

International School of Materials Science and Technology (1988 Erice, Italy). Solid state microbatteries. New York: Plenum Press, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

1945-, Julien Christian, e Nazri Gholamabbas, eds. Solid state batteries: Materials design and optimization. Boston: Kluwer Academic, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

R, Chowdari B. V., Radhakrishna S, International Council of Scientific Unions. Committee on Science and Technology in Developing Countries., Asian Society for Solid State Ionics. e International Seminar on Solid State Ionic Devices (1988 : Singapore), eds. Solid state ionic devices: Proceedings of the international seminar : 18-23 July 1988, Singapore. Singapore: World Scientific, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Arumugam, Manithiram, e American Ceramic Society Meeting, eds. Developments in solid oxide fuel cells and lithium ion batteries: Proceedings of the 106th Annual Meeting of the American Ceramic Society : Indianapolis, Indiana, USA (2004). Westerville, Ohio: American Ceramic Society, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

VIALLET. Batteries Tout-Solide Monolothiques. ISTE Editions Ltd., 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Viallet, Virginie, e Benoit Fleutot. Inorganic Massive Batteries. Wiley & Sons, Incorporated, John, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Batteries solides"

1

Drakopoulos, Stavros X. "Dielectric Relaxation and Transport Dynamics of Solid-State Polymer Electrolytes". In Batteries, 117–53. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003512882-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Owen, John R. "Micro-Batteries". In Solid State Batteries, 413–22. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_28.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Linford, Roger G. "Polymer Batteries". In Solid State Materials, 30–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Tealdi, C., E. Quartarone e P. Mustarelli. "Solid-State Lithium Ion Electrolytes". In Rechargeable Batteries, 311–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15458-9_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Akridge, James R. "Solid State Batteries". In Solid State Microbatteries, 343–52. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2263-2_19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Huggins, Robert A. "Phenomenology of Ionic Transport in Solid-State Battery Materials". In Solid State Batteries, 5–17. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bonino, F., e B. Scrosati. "Electrode Processes in Solid State Cells. II: The Intercalation Electrode". In Solid State Batteries, 119–28. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Atlung, S. "Porous and Composite Electrodes for Solid State Batteries". In Solid State Batteries, 129–61. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Steele, B. C. H. "Solid State Electrodes: A Materials Introduction". In Solid State Batteries, 163–77. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Murphy, D. W. "Insertion Compounds: Relationship of Structure to Electrochemistry". In Solid State Batteries, 181–96. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Batteries solides"

1

STREJOIU, Cristian-Valentin, Mohammed Gmal OSMAN, Corel PANAIT, Alexandra Catalina LAZAROIU e Ofelia SIMA. "STORAGE SYSTEM TOPOLOGIES FOR VARIOUS RENEWABLE ENERGY SOURCES". In 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 57–64. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/4.2/s16.08.

Texto completo da fonte
Resumo:
Hybrid electricity storage systems are becoming essential for efficiently managing renewable energy sources and enhancing the stability of power grids. As the adoption of renewables expands, these systems are crucial for balancing supply and demand, mitigating intermittency issues, and ensuring grid reliability. This paper offers an in-depth review of different system configurations used in hybrid storage systems, emphasizing the significance of understanding and optimizing their intricate designs. Recent technological advancements have paved the way for the development of innovative storage system topologies, including redox flow batteries, solid-state lithium-ion batteries, and supercapacitor-based systems. Each of these technologies presents distinct advantages: redox flow batteries are notable for their scalability and extended cycle life, solid-state lithium-ion batteries provide high energy density and enhanced safety, while supercapacitors excel in applications requiring fast charging and discharging. Nonetheless, these innovations also face challenges, such as the high costs and manufacturing complexities of solid-state lithium-ion batteries, as well as the lower energy density characteristic of supercapacitors. Evaluating the advantages and limitations of these advanced topologies is critical for guiding future research and development. The strategic integration of these technologies can result in more resilient, efficient, and cost-effective hybrid storage systems. This evolution is essential for supporting the global shift towards sustainable energy, ensuring that hybrid systems not only meet current demands but also pave the way for future innovations in renewable energy management.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mishra, Dillip Kumar, Jiangfeng Zhang, Saroj Paudel, Morteza Sabet, Mihir Parekh, Apparao Rao e Yi Ding. "Analyzing Electrical Equivalent Circuit Models for Solid-State Batteries: Parameterization and Modeling". In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society, 1–5. IEEE, 2024. https://doi.org/10.1109/iecon55916.2024.10905339.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lin, Zixiao, Jim Wouda, Sami Oukassi, Gaël Pillonnet e Patrick Mercier. "20.9 An Autonomous and Lightweight Microactuator Driving System Using Flying Solid-State Batteries". In 2025 IEEE International Solid-State Circuits Conference (ISSCC), 364–66. IEEE, 2025. https://doi.org/10.1109/isscc49661.2025.10904775.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Yersak, Tom. "Sulfide Glass Solid-State Electrolyte Separators for Semi-Solid Li-S Batteries". In TechBlick - Battery Materials and Solid-State Batteries. US DOE, 2023. http://dx.doi.org/10.2172/2326225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Takada, Kazunori. "Solid electrolytes and solid-state batteries". In ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials. Author(s), 2016. http://dx.doi.org/10.1063/1.4961900.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bates, Alex, Yuliya Preger, Loraine Torres-Castro, Katharine Harrison, Stephen Harris, John Hewson e Megan Diaz. "Are Solid-State Batteries Safer Than Lithium-ion Batteries?." In Proposed for presentation at the DOE Energy Storage Peer Review 2022 in ,. US DOE, 2022. http://dx.doi.org/10.2172/2005232.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Torres-Castro, Loraine, Alex Bates, Yuliya Preger, Katharine Harrison, Randy Shurtz, Megan Diaz e John Hewson. "Are Solid-State Batteries Safer Than Li-Ion Batteries?" In 2023 MSRF External Review Board (ERB) - Livermore, California, United States of America - May - 2023. US DOE, 2023. http://dx.doi.org/10.2172/2431376.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kartini, Evvy, e Maykel Manawan. "Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?" In PROCEEDINGS OF INTERNATIONAL SEMINAR ON MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS 2015). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4941462.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kumar, Binod, e Lawrence G. Scanlon. "Solid Electrolyte Development for Lithium Batteries". In SAE Aerospace Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/971228.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Carbajal, Gerardo. "Study of Flow Field Configuration Effect in Cooling Systems". In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-72170.

Texto completo da fonte
Resumo:
Abstract A three-dimensional numerical simulation was performed to increase a cooling system’s performance using different flow field configurations. In this study, the cooling system consists of three fluid configurations and contains ten batteries and eleven channels. The fluid flow configurations are the U-configuration, the Z-configuration, and the I-configuration. The battery was modeled assuming a solid material with constant physical properties, and the air is the working fluid in the cooling system. The numerical simulation results showed a better uniform temperature distribution with the I-configuration than the other two configurations. The numerical solution of the coupled fluid-energy equations corresponding to the three configurations indicates a significant effect of the relative flow distribution in the local transfer of energy from the batteries to the airflow: therefore, affecting the temperature distribution of the system’s components. This study assumed four heat inputs and mainly focused on the effect of fluid flow in evaluating the core temperature of the batteries. The worst performance in terms of temperature rise in the system corresponded to the U-configuration. The I-configuration presented the lowest average temperature in the battery’s core; the temperature field was also more uniform than the other two configurations. The U-configuration delivered the lowest pressure drop, and the Z-configuration the highest pressure drop. The results confirmed that it is possible to improve the cooling process by selecting the suitable flow field configuration of the system.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Batteries solides"

1

Gao, Elizabeth, David Pogue, Debbie Lawrence, Ashok Kumar, Christopher Boyd, Samantha Mabry, Paul Braun et al. Temperature-insensitive, high-density lithium-ion batteries. Engineer Research and Development Center (U.S.), dezembro de 2024. https://doi.org/10.21079/11681/49498.

Texto completo da fonte
Resumo:
Lithium-ion (Li-ion) batteries are a preferred energy storage solution for their generation capacity and power density; however, their chemical in-stability at high temperature raises major concerns relating to their safety, reliability, and lifespan. Over time, natural temperature cycling of Li-ion batteries degrades the depth of discharge and degree of charge that can be achieved, limiting the cell performance and storage capacity as the micro-structure of the anode and cathode interfaces are altered. To ensure safe, continuous, and high-performance Li-ion batteries, improvements are needed to counteract the degradation of their electrochemically active and inactive chemical components. Using solid-state alternatives to Li-ion components, high performance may be maintained while improving the stability of the ion during charging. The synthesis, characterization, theory, simulation, and fabrication of dense high-voltage cathodes, solid electrolytes, and metal anodes are detailed in this report to establish the underpinning science and technology required to improve the stability of Li-ion batteries.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lee, Sehee. Solid State Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2013. http://dx.doi.org/10.21236/ada589846.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Narang, S., e D. Macdonald. Solid polymer electrolytes for rechargeable batteries. Office of Scientific and Technical Information (OSTI), novembro de 1990. http://dx.doi.org/10.2172/6074200.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sakamoto, Jeff, D. Siegel, J. Wolfenstine, C. Monroe e J. Nanda. Solid electrolytes for solid-state and lithium-sulfur batteries. Office of Scientific and Technical Information (OSTI), agosto de 2018. http://dx.doi.org/10.2172/1464928.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Narang, S. C., e S. C. Ventura. Solid polymer electrolytes for rechargeable batteries. Final report. Office of Scientific and Technical Information (OSTI), fevereiro de 1992. http://dx.doi.org/10.2172/10178987.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Herle, Subra, Zonghei Chen, Joseph Libera, Sanja Tepavcevic, Venkat Anandan, Thomas Yersak, Matthew McDowell et al. Challenges for and Pathways Toward Solid-State Batteries. Office of Scientific and Technical Information (OSTI), novembro de 2020. http://dx.doi.org/10.2172/1731043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Eitouni, Hany, Jin Yang, Russell Pratt, Xiao Wang e Ulrik Grape. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles. Office of Scientific and Technical Information (OSTI), setembro de 2014. http://dx.doi.org/10.2172/1177779.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zhang, Pu. All Solid State Batteries Enabled by Multifunctional Electrolyte Materials. Office of Scientific and Technical Information (OSTI), dezembro de 2022. http://dx.doi.org/10.2172/1906484.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Pandey, Ramsharan, Rakesh Iyer e Jarod Kelly. A Review on Solid State Batteries: Life Cycle Perspectives. Office of Scientific and Technical Information (OSTI), setembro de 2024. http://dx.doi.org/10.2172/2466235.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gur, Ilan. Developing the Next Generation of High-Performance Solid-State Batteries. Office of Scientific and Technical Information (OSTI), março de 2020. http://dx.doi.org/10.2172/1607791.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia