Artigos de revistas sobre o tema "Batteries à flux"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Batteries à flux".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chen, Ming Yi, Richard Yuen e Jian Wang. "Experimental Study on the Bundle Lithium-Ion Batteries Fire". Materials Science Forum 890 (março de 2017): 263–66. http://dx.doi.org/10.4028/www.scientific.net/msf.890.263.
Texto completo da fonteAhmedov, B. J. "On a Possibility to Measure Thermo-Electric Power in SNS Structures". Modern Physics Letters B 12, n.º 16 (10 de julho de 1998): 633–37. http://dx.doi.org/10.1142/s0217984998000743.
Texto completo da fonteLi, Zhen Zhe, Yun De Shen, Gui Ying Shen, Mei Qin Li e Ming Ren. "Parameter Study on Cooling System of Battery for HEV". Advanced Materials Research 538-541 (junho de 2012): 2038–42. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.2038.
Texto completo da fonteLiu, Yue, Bin Li, Jianhua Liu, Songmei Li e Shubin Yang. "Pre-planted nucleation seeds for rechargeable metallic lithium anodes". Journal of Materials Chemistry A 5, n.º 35 (2017): 18862–69. http://dx.doi.org/10.1039/c7ta04932c.
Texto completo da fonteWu, Zhiheng, Yongshang Zhang, Lu Li, Yige Zhao, Yonglong Shen, Shaobin Wang e Guosheng Shao. "Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries". Journal of Materials Chemistry A 8, n.º 44 (2020): 23248–56. http://dx.doi.org/10.1039/d0ta07633c.
Texto completo da fonteZeising, Samuel, Rebecca Seidl, Angelika Thalmayer, Georg Fischer e Jens Kirchner. "Low-Frequency Magnetic Localization of Capsule Endoscopes with an Integrated Coil". Engineering Proceedings 6, n.º 1 (17 de maio de 2021): 38. http://dx.doi.org/10.3390/i3s2021dresden-10146.
Texto completo da fonteKhasanshin, R. H., e D. V. Ouvarov. "Determination of threshold values of parameters of electronic irradiation of glass leading to electrostatic discharges". Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, n.º 4 (26 de novembro de 2024): 538–48. http://dx.doi.org/10.31857/s0367676524040032.
Texto completo da fonteBenavides, Darío, Paúl Arévalo, Luis G. Gonzalez e José A. Aguado. "Analysis of Different Energy Storage Technologies for Microgrids Energy Management". E3S Web of Conferences 173 (2020): 03004. http://dx.doi.org/10.1051/e3sconf/202017303004.
Texto completo da fonteTeshima, Katsuya, Hajime Wagata e Shuji Oishi. "All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (1 de setembro de 2013): 000187–91. http://dx.doi.org/10.4071/cicmt-wp41.
Texto completo da fonteTan, Chun, Matthew D. R. Kok, Sohrab R. Daemi, Daniel J. L. Brett e Paul R. Shearing. "Three-dimensional image based modelling of transport parameters in lithium–sulfur batteries". Physical Chemistry Chemical Physics 21, n.º 8 (2019): 4145–54. http://dx.doi.org/10.1039/c8cp04763d.
Texto completo da fonteWu, Lisha, Ying Zhang, Ping Shang, Yanfeng Dong e Zhong-Shuai Wu. "Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes". Journal of Materials Chemistry A 9, n.º 48 (2021): 27408–14. http://dx.doi.org/10.1039/d1ta08697a.
Texto completo da fonteLiu, Borui, Juan F. Torres, Mahdiar Taheri, Pan Xiong, Teng Lu, Junwu Zhu, Yun Liu, Guihua Yu e Antonio Tricoli. "Dual‐Ion Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries". Advanced Energy Materials 12, n.º 10 (27 de janeiro de 2022): 2103444. http://dx.doi.org/10.1002/aenm.202103444.
Texto completo da fonteNateghi, A., e M. A. Keip. "A thermo-chemo-mechanically coupled model for cathode particles in lithium–ion batteries". Acta Mechanica 232, n.º 8 (26 de maio de 2021): 3041–65. http://dx.doi.org/10.1007/s00707-021-02970-1.
Texto completo da fonteCho, Jinil, Yong-keon Ahn, Yong Jun Gong, Seonmi Pyo, Jeeyoung Yoo e Youn Sang Kim. "An organic–inorganic composite separator for preventing shuttle effect in lithium–sulfur batteries". Sustainable Energy & Fuels 4, n.º 6 (2020): 3051–57. http://dx.doi.org/10.1039/d0se00123f.
Texto completo da fonteYubuta, Kunio, Yusuke Mizuno, Nobuyuki Zettsu, Shigeki Komine, Kenichiro Kami, Hajime Wagata, Shuji Oishi e Katsuya Teshima. "TEM observation for low-temperature grown spinel-type LiMn2O4crystals". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C749. http://dx.doi.org/10.1107/s205327331409250x.
Texto completo da fonteSharma, Bhamiti, Bing Tan, David Shepard, David Li, Yuhao Liao e Yang-Tse Cheng. "Multifunctional Zeolite Coated Separators for Improved Performance and Safety of Lithium Metal Batteries". ECS Meeting Abstracts MA2023-01, n.º 2 (28 de agosto de 2023): 549. http://dx.doi.org/10.1149/ma2023-012549mtgabs.
Texto completo da fonteKim, Patrick J., Kyungho Kim e Vilas G. Pol. "Uniform metal-ion flux through interface-modified membrane for highly stable metal batteries". Electrochimica Acta 283 (setembro de 2018): 517–27. http://dx.doi.org/10.1016/j.electacta.2018.06.177.
Texto completo da fonteZHAO, LIWEI, JIANGFENG NI, HAIBO WANG e LIJUN GAO. "FLUX SYNTHESIS OF Na0.44MnO2 NANORIBBONS AND THEIR ELECTROCHEMICAL PROPERTIES FOR Na-ION BATTERIES". Functional Materials Letters 06, n.º 02 (abril de 2013): 1350012. http://dx.doi.org/10.1142/s1793604713500124.
Texto completo da fonteTang, Weiping. "Preparation of Lithium Cobalt Oxide by LiCl-Flux Method for Lithium Rechargeable Batteries". Electrochemical and Solid-State Letters 1, n.º 3 (1999): 145. http://dx.doi.org/10.1149/1.1390665.
Texto completo da fontePark, Kyu-Young, Hyungsub Kim, Seongsu Lee, Jongsoon Kim, Jihyun Hong, Hee-Dae Lim, Inchul Park e Kisuk Kang. "Thermal structural stability of a multi-component olivine electrode for lithium ion batteries". CrystEngComm 18, n.º 39 (2016): 7463–70. http://dx.doi.org/10.1039/c6ce00944a.
Texto completo da fonteChi, Ri-Guang, e Seok-Ho Rhi. "Oscillating Heat Pipe Cooling System of Electric Vehicle’s Li-Ion Batteries with Direct Contact Bottom Cooling Mode". Energies 12, n.º 9 (5 de maio de 2019): 1698. http://dx.doi.org/10.3390/en12091698.
Texto completo da fonteZhu, Jie, Junchao Zheng, Guolin Cao, Yunjiao Li, Yuan Zhou, Shiyi Deng e Chunxi Hai. "Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries". Journal of Power Sources 464 (julho de 2020): 228207. http://dx.doi.org/10.1016/j.jpowsour.2020.228207.
Texto completo da fonteTakeuchi, Esther S., Amy C. Marschilok e Kenneth J. Takeuchi. "(Invited) Transport Limits for Zinc Aqueous Electrolyte Batteries: Investigation over Multiple Length Scales". ECS Meeting Abstracts MA2024-01, n.º 3 (9 de agosto de 2024): 558. http://dx.doi.org/10.1149/ma2024-013558mtgabs.
Texto completo da fonteM., Vishnu, Anooplal B. e Rajesh Baby. "Experimental exploration of nano-phase change material composites for thermal management in Lithium-ion batteries". Energy Storage and Conversion 2, n.º 2 (24 de maio de 2024): 309. http://dx.doi.org/10.59400/esc.v2i2.309.
Texto completo da fonteGuillamon, Joaquin I., e Amit Verma. "Electrolyte-Centric Thermal Model of Li-Ion Battery Under Abuse Conditions". ECS Meeting Abstracts MA2022-02, n.º 5 (9 de outubro de 2022): 556. http://dx.doi.org/10.1149/ma2022-025556mtgabs.
Texto completo da fonteYurukcu, M., H. Cansizoglu, M. F. Cansizoglu e T. Karabacak. "Conformality of PVD shell layers on vertical arrays of rods with different aspect ratios investigated by Monte Carlo simulations". MRS Advances 2, n.º 8 (2017): 465–70. http://dx.doi.org/10.1557/adv.2017.158.
Texto completo da fonteJaya Shankar, R., J. Lakshmipathi, N. Raghukiran, P. Manickavasagam, YS Govardhan e G. Sakthivel. "Design and Optimization of Axial Flux Permanent Magnet Alternator for Onboard Power Generation in Two-Wheeler Applications". Journal of Physics: Conference Series 2601, n.º 1 (1 de setembro de 2023): 012041. http://dx.doi.org/10.1088/1742-6596/2601/1/012041.
Texto completo da fonteSteganov, G. B., A. M. Beznyakov e A. V. Nemirov. "Influence of space vehicle remote power supply on thermal regimes of solar batteries". VESTNIK of Samara University. Aerospace and Mechanical Engineering 21, n.º 1 (27 de abril de 2022): 14–23. http://dx.doi.org/10.18287/2541-7533-2022-21-1-14-23.
Texto completo da fonteWhite, Gavin, Alastair Hales, Gregory James Offer e Yatish Patel. "(Invited) Methods for the Parameterisation of Battery Thermal Models". ECS Meeting Abstracts MA2023-02, n.º 7 (22 de dezembro de 2023): 974. http://dx.doi.org/10.1149/ma2023-027974mtgabs.
Texto completo da fonteLiu, Ying, Fang Fu, Chen Sun, Aotian Zhang, Hong Teng, Liqun Sun e Haiming Xie. "Enabling Stable Interphases via In Situ Two-Step Synthetic Bilayer Polymer Electrolyte for Solid-State Lithium Metal Batteries". Inorganics 10, n.º 4 (29 de março de 2022): 42. http://dx.doi.org/10.3390/inorganics10040042.
Texto completo da fonteSheryazov, Saken Koishibaevich, Olga Anatolievna Guseva, Aleksey Sergeevich Chigak e Arsen Khalitovich Doskenov. "Improving the methodology for determining the main parameters of solar batteries". Agrarian Scientific Journal, n.º 6 (26 de junho de 2023): 156–62. http://dx.doi.org/10.28983/asj.y2023i6pp156-162.
Texto completo da fonteFung, Kuan-Zong, Shu-Yi Tsai e I.-Chun Liu. "Conduction/Densification Enhancement of Na1+X Zr2Si x P3-X O12 Nasicon Solid Electrolyte for Solid-State Na Batteries". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 767. http://dx.doi.org/10.1149/ma2023-024767mtgabs.
Texto completo da fonteMiao, Xianguang, Huiyang Wang, Rui Sun, Xiaoli Ge, Danyang Zhao, Peng Wang, Rutao Wang e Longwei Yin. "Isotropous Sulfurized Polyacrylonitrile Interlayer with Homogeneous Na + Flux Dynamics for Solid‐State Na Metal Batteries". Advanced Energy Materials 11, n.º 13 (25 de fevereiro de 2021): 2003469. http://dx.doi.org/10.1002/aenm.202003469.
Texto completo da fonteJacob, Jorne. "The Chalkboard: C Rating of Batteries: A Misleading Concept, C Flux Rather than C Rate". Electrochemical Society Interface 27, n.º 2 (2018): 42–43. http://dx.doi.org/10.1149/2.f01182if.
Texto completo da fonteTANG, W., H. KANOH e K. OOI. "ChemInform Abstract: Preparation of Lithium Cobalt Oxide by LiCl-Flux Method for Lithium Rechargeable Batteries." ChemInform 29, n.º 43 (19 de junho de 2010): no. http://dx.doi.org/10.1002/chin.199843012.
Texto completo da fonteBoragno, Corrado, Orazio Aiello e Daniele D. Caviglia. "Monitoring the Air Quality in an HVAC System via an Energy Harvesting Device". Sensors 23, n.º 14 (13 de julho de 2023): 6381. http://dx.doi.org/10.3390/s23146381.
Texto completo da fonteJu, Zhengyu, Tianrui Zheng, Bowen Zhang e Guihua Yu. "Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances". Chemical Society Reviews, 2024. http://dx.doi.org/10.1039/d4cs00474d.
Texto completo da fonteLuo, Zhixuan, Yiming Zhao, Yu Huyan, Lingbo Ren, Mingyao Wang, Xu Li e Jian‐Gan Wang. "Designing Multi‐functional Separators With Regulated Ion Flux and Selectivity for Macrobian Zinc Ion Batteries". Small, 9 de dezembro de 2024. https://doi.org/10.1002/smll.202410342.
Texto completo da fonteVillarroel-Sepúlveda, Nicolás, F. A. Asenjo e P. S. Moya. "Magnetic seed generation by plasma heat flux in accretion disks". Astronomy & Astrophysics, 3 de dezembro de 2024. https://doi.org/10.1051/0004-6361/202452803.
Texto completo da fonteYang, Yi, Sa Wang, Yuqing Duan, Ting Wang, Fengdong Wang, Haitao Zhu, Zhifang Wang, Kai Zhang, Peng Cheng e Zhenjie Zhang. "Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High‐Density Redox Sites for Efficient Proton Batteries". Angewandte Chemie International Edition, 25 de novembro de 2024. http://dx.doi.org/10.1002/anie.202418394.
Texto completo da fonteYang, Yi, Sa Wang, Yuqing Duan, Ting Wang, Fengdong Wang, Haitao Zhu, Zhifang Wang, Kai Zhang, Peng Cheng e Zhenjie Zhang. "Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High‐Density Redox Sites for Efficient Proton Batteries". Angewandte Chemie, 25 de novembro de 2024. http://dx.doi.org/10.1002/ange.202418394.
Texto completo da fonteZhang, Shuoqing, Ruhong Li, Nan Hu, Tao Deng, Suting Weng, Zunchun Wu, Di Lu et al. "Tackling realistic Li+ flux for high-energy lithium metal batteries". Nature Communications 13, n.º 1 (16 de setembro de 2022). http://dx.doi.org/10.1038/s41467-022-33151-w.
Texto completo da fonteJia, Hao, Chao Zeng, Hyung‐Seok Lim, Ashley Simmons, Yuepeng Zhang, Marc H. Weber, Mark H. Engelhard et al. "Important Role of Ion Flux Regulated by Separators in Lithium Metal Batteries". Advanced Materials, 25 de dezembro de 2023. http://dx.doi.org/10.1002/adma.202311312.
Texto completo da fonteWang, jinguo, fan-gong Kong, zi-rui wang, Manman Ren, cong-de Qiao, Wei-Liang LIU, jinshui Yao, chang-bin Zhang e hui Zhao. "Dendrite-Free Zinc Deposition Induced by an Artificial Layer of Strontium Titanate for Stable Zinc Metal Anode". Journal of The Electrochemical Society, 12 de junho de 2023. http://dx.doi.org/10.1149/1945-7111/acdd9e.
Texto completo da fonteWang, Haobo, Yutong Wu, Qihong Xie, Xinxi Ma, Jiawei Zou, Anyu Zheng, Taolian Guo, Chao Wang e Jie Han. "An Ionic Sieve‐Integrated Conductive Interfacial Design to Simultaneously Regulate the Zn2+ Flux and Interfacial Resistance for Advancing Zinc‐Ion Batteries". Advanced Functional Materials, 24 de novembro de 2024. http://dx.doi.org/10.1002/adfm.202417145.
Texto completo da fonteLi, Rong, Jiaqi Li, Xin Wang, Caifeng Jian, Xinxiang Wu, Benhe Zhong e Yanxiao Chen. "Surface Design for High Ion Flux Separator in Lithium-Sulfur Batteries". Journal of Colloid and Interface Science, outubro de 2023. http://dx.doi.org/10.1016/j.jcis.2023.10.018.
Texto completo da fonteNayak, Bhojkumar, Ritwik Mondal e Musthafa Ottakam Thotiyl. "Electrostatically Driven Unidirectional Molecular Flux for High Performance Alkaline Flow Batteries". Nanoscale, 2023. http://dx.doi.org/10.1039/d3nr02727a.
Texto completo da fonteCai, Da‐Qian, Shi‐Xi Zhao, Huan Liu, Shuyu Zhou, Tong Gao, Ruihua Rao, Jianwei Zhao, Yirui Deng, Jin‐Lin Yang e Ruiping Liu. "Ordered and Expanded Li Ion Channels for Dendrite‐Free and Fast Kinetics Lithium–Sulfur Battery". Advanced Functional Materials, 24 de novembro de 2024. http://dx.doi.org/10.1002/adfm.202419165.
Texto completo da fonteYing, Hangjun, Pengfei Huang, Zhao Zhang, Shunlong Zhang, Qizhen Han, Zhihao Zhang, Jianli Wang e Wei-Qiang Han. "Freestanding and Flexible Interfacial Layer Enables Bottom-Up Zn Deposition Toward Dendrite-Free Aqueous Zn-Ion Batteries". Nano-Micro Letters 14, n.º 1 (1 de setembro de 2022). http://dx.doi.org/10.1007/s40820-022-00921-6.
Texto completo da fonteHu, Qiang, Jisong Hu, Fei Ma, Yunbo Liu, Lincai Xu, Lei Li, Xingquan Liu, Jingxin Zhao e Huan Pang. "Redistributing Zinc‐ion Flux by Work Function Chemistry toward Stabilized and Durable Zn Metal Batteries". Energy & Environmental Science, 2024. http://dx.doi.org/10.1039/d3ee04304e.
Texto completo da fonte