Artigos de revistas sobre o tema "BaTiO₃"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "BaTiO₃".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Fan, Guoliang, Liu Zhao, Cairong Gong, Jia Ma e Gang Xue. "Effect of Supports on Soot Oxidation of Copper Catalysts: BaTiO3 Versus Fe2O3@BaTiO3 Core/Shell Microsphere". Nano 11, n.º 01 (janeiro de 2016): 1650010. http://dx.doi.org/10.1142/s1793292016500107.
Texto completo da fonteSetyadi, Ayu Uswatu Lissa Sapta, Yofentina Iriani e Fahru Nurosyid. "Penumbuhan Lapisan Tipis Barium Titanat (BaTiO3) menggunakan Metode Sol-Gel dengan Variasi Mol". Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2 (28 de novembro de 2017): 36. http://dx.doi.org/10.20961/prosidingsnfa.v2i0.16360.
Texto completo da fonteSu, Jun, e Jun Zhang. "Remarkable enhancement of mechanical and dielectric properties of flexible ethylene propylene diene monomer (EPDM)/ barium titanate (BaTiO3) dielectric elastomer by chemical modification of particles". RSC Advances 5, n.º 96 (2015): 78448–56. http://dx.doi.org/10.1039/c5ra14047a.
Texto completo da fonteDing, Y., Y. D. Yao, K. T. Wu, P. S. Chen, C. S. Tu, J. C. Hsu, D. S. Hung e S. F. Lee. "Thickness Effect of Interlayer on the Dielectric Permittivity of BaTiO$_{3}$/Co/BaTiO$_{3}$ and BaTiO$_{3}$/Ta/BaTiO$_{3}$ Films". IEEE Transactions on Magnetics 48, n.º 11 (novembro de 2012): 4297–300. http://dx.doi.org/10.1109/tmag.2012.2198053.
Texto completo da fonteJiang, Beibei, James Iocozzia, Lei Zhao, Hefeng Zhang, Yeu-Wei Harn, Yihuang Chen e Zhiqun Lin. "Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties". Chemical Society Reviews 48, n.º 4 (2019): 1194–228. http://dx.doi.org/10.1039/c8cs00583d.
Texto completo da fonteGuo, Hua, Aleksander Jaworski, Zili Ma, Adam Slabon, Zoltan Bacsik, Reji Nedumkandathil e Ulrich Häussermann. "Trapping of different stages of BaTiO3 reduction with LiH". RSC Advances 10, n.º 58 (2020): 35356–65. http://dx.doi.org/10.1039/d0ra07276a.
Texto completo da fonteLiu, Leipeng, Yihe Zhang, Fengzhu Lv, Wangshu Tong, Ling Ding, Paul K. Chu e Penggang Li. "Polyimide composites composed of covalently bonded BaTiO3@GO hybrids with high dielectric constant and low dielectric loss". RSC Advances 6, n.º 90 (2016): 86817–23. http://dx.doi.org/10.1039/c6ra17259h.
Texto completo da fonteMa, Ya Lu, Hong Long Zhu e Jian Lin Li. "Preparation and Characterization of BaTiO3 Powders by Sol-Gel and BaTiO3 Ferroelectric Films by Electrophoretic Deposition Technique". Key Engineering Materials 280-283 (fevereiro de 2007): 617–22. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.617.
Texto completo da fonteWang, Jiasheng, Shumin Han, Zhibin Wang, Dandan Ke, Jingjing Liu e Mingzhen Ma. "Enhanced hydrogen storage properties of the 2LiBH4–MgH2composite with BaTiO3as an additive". Dalton Transactions 45, n.º 16 (2016): 7042–48. http://dx.doi.org/10.1039/c6dt00045b.
Texto completo da fonteLe, Xuan Luc, Nguyen Dang Phu e Nguyen Xuan Duong. "Enhancement of ferroelectricity in perovskite BaTiO<sub>3</sub> epitaxial thin films by sulfurization". AIMS Materials Science 11, n.º 4 (2024): 802–14. http://dx.doi.org/10.3934/matersci.2024039.
Texto completo da fonteBouharras, Fatima Ezzahra, Mustapha Raihane, Gilles Silly, Cedric Totee e Bruno Ameduri. "Core–shell structured poly(vinylidene fluoride)-grafted-BaTiO3 nanocomposites prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization of VDF for high energy storage capacitors". Polymer Chemistry 10, n.º 7 (2019): 891–904. http://dx.doi.org/10.1039/c8py01706a.
Texto completo da fonteDING, SHIWEN, e JING WANG. "DIELECTRIC CERAMIC PREPARED FROM (Ba, Sr)TiO3 NANOPOWDER UNDER MICROWAVE IRRADIATION". International Journal of Nanoscience 05, n.º 02n03 (abril de 2006): 371–76. http://dx.doi.org/10.1142/s0219581x06004498.
Texto completo da fonteYu, Li, Guoying Gao, Guangqian Ding, Yongfa Duan, Yang Liu, Yan He e Kailun Yao. "Prediction of large magnetoelectric coupling in Fe4N/BaTiO3 and MnFe3N/BaTiO3 junctions from a first-principles study". RSC Advances 6, n.º 35 (2016): 29504–11. http://dx.doi.org/10.1039/c6ra00044d.
Texto completo da fontePachari, Sreenivasulu, Swadesh K. Pratihar e Bibhuti B. Nayak. "Enhanced magneto-capacitance response in BaTiO3–ferrite composite systems". RSC Advances 5, n.º 128 (2015): 105609–17. http://dx.doi.org/10.1039/c5ra16742f.
Texto completo da fonteHUANG, GUI-FANG, WEI-QING HUANG, LING-LING WANG, ZHONG XIE, BING-SUO ZOU e JIAN-HUI ZHANG. "INVESTIGATION OF BIAXIAL ELASTIC MODULUS AND CTE OF BaTiO3 FILMS". International Journal of Modern Physics B 23, n.º 24 (30 de setembro de 2009): 4933–41. http://dx.doi.org/10.1142/s021797920903876x.
Texto completo da fonteEstandía, Saúl, Florencio Sánchez, Matthew F. Chisholm e Jaume Gázquez. "Rotational polarization nanotopologies in BaTiO3/SrTiO3 superlattices". Nanoscale 11, n.º 44 (2019): 21275–83. http://dx.doi.org/10.1039/c9nr08050c.
Texto completo da fonteHayashida, Kenichi, Yoriko Matsuoka e Yasuhiro Takatani. "An ideal nanostructure of polymer/BaTiO3dielectric materials with high reliability for breakdown strength: isolated and uniformly dispersed BaTiO3nanoparticles by thick polymer shells". RSC Adv. 4, n.º 63 (2014): 33530–36. http://dx.doi.org/10.1039/c4ra06801g.
Texto completo da fonteCHEN, QIAN, LU JIN, WENJIAN WENG, GAORONG HAN e PIYI DU. "DIELECTRIC BEHAVIOR OF NOVEL ACETYLENE BLACK–PVDF/BaTiO3 TRI-PHASE COMPOSITE FILM". Surface Review and Letters 15, n.º 01n02 (fevereiro de 2008): 19–22. http://dx.doi.org/10.1142/s0218625x08010889.
Texto completo da fonteKharchouche, Faiçal, Yousra Malaoui e Omrane Bouketir. "Study of BaTiO3-doped Bi2O3/ZnO varistor microstructure and its electrical characteristics". Indonesian Journal of Electrical Engineering and Computer Science 35, n.º 1 (1 de julho de 2024): 42. http://dx.doi.org/10.11591/ijeecs.v35.i1.pp42-51.
Texto completo da fonteYu, Dan, Nuo-xin Xu, Liang Hu, Qi-long Zhang e Hui Yang. "Nanocomposites with BaTiO3–SrTiO3 hybrid fillers exhibiting enhanced dielectric behaviours and energy-storage densities". Journal of Materials Chemistry C 3, n.º 16 (2015): 4016–22. http://dx.doi.org/10.1039/c4tc02972k.
Texto completo da fonteHuang, Jin Tao, Tomoya Imura e Norimasa Sakamoto. "Synthesis of Barium Titanate Nanoparticles from Decomposition of Barium Titanyl Oxalate Tetrahydrate with Aid of Supercritical Water". Advanced Materials Research 463-464 (fevereiro de 2012): 781–87. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.781.
Texto completo da fonteAepuru, Radhamanohar, Shivani Kankash e H. S. Panda. "Schottky barrier tuning in semiconducting ZnO and BaTiO3 hybrid heterostructures shows dielectric and electrical anisotropy". RSC Advances 6, n.º 38 (2016): 32272–85. http://dx.doi.org/10.1039/c6ra00841k.
Texto completo da fonteLi, Jijiao, Bo Li, Hongya Wu e Ji Zhou. "Direct writing of three-dimensional woodpile BaTiO3 structures". Modern Physics Letters B 28, n.º 14 (10 de junho de 2014): 1450108. http://dx.doi.org/10.1142/s0217984914501085.
Texto completo da fonteZhu, Mingjun, Ganghua Zhang, Lianna Zhai, Jianwu Cao, ShaSha Li e Tao Zeng. "Polarization-enhanced photoelectrochemical properties of BaTiO3/BaTiO3−x/CdS heterostructure nanocubes". Dalton Transactions 50, n.º 9 (2021): 3137–44. http://dx.doi.org/10.1039/d1dt00103e.
Texto completo da fonteSONIA, G., M. SENTHIL KUMAR, D. ARIVUOLI, J. KUMAR e K. BASKAR. "PREPARATION AND CHARACTERISATION OF Ti/BaTiO3/InP MIS STRUCTURES". International Journal of Modern Physics B 16, n.º 01n02 (20 de janeiro de 2002): 281–86. http://dx.doi.org/10.1142/s0217979202009767.
Texto completo da fonteLi, Chang'an, Xin Guan, Shizhong Yue, Xizu Wang, Jianmin Li, Hanlin Cheng, Shan Wang, Aung Ko Ko Kyaw e Jianyong Ouyang. "Simultaneous enhancements in the Seebeck coefficient and conductivity of PEDOT:PSS by blending ferroelectric BaTiO3 nanoparticles". Journal of Materials Chemistry A 9, n.º 31 (2021): 16952–60. http://dx.doi.org/10.1039/d1ta04235a.
Texto completo da fonteSADHANA, K., K. PRAVEENA e S. R. MURTHY. "DIELECTRIC AND MAGNETIC PROPERTIES OF BaTiO3+MgCuZnFe2O4 NANOCOMPOSITES". Modern Physics Letters B 24, n.º 03 (30 de janeiro de 2010): 369–78. http://dx.doi.org/10.1142/s0217984910022445.
Texto completo da fonteHeo, Yooun, Daisuke Kan, Yuichi Shimakawa e Jan Seidel. "Resistive switching properties of epitaxial BaTiO3−δ thin films tuned by after-growth oxygen cooling pressure". Physical Chemistry Chemical Physics 18, n.º 1 (2016): 197–204. http://dx.doi.org/10.1039/c5cp05333a.
Texto completo da fonteZhang, Su-Wei, Shun Li, Bo-Ping Zhang, Dongfang Yu, Zuotai Zhang e Jing-Feng Li. "Copper-nanoparticle-dispersed amorphous BaTiO3 thin films as hole-trapping centers: enhanced photocatalytic activity and stability". RSC Advances 9, n.º 9 (2019): 5045–52. http://dx.doi.org/10.1039/c8ra09204d.
Texto completo da fonteGromada, Magdalena, Mojtaba Biglar, Tomasz Trzepieciński e Feliks Stachowicz. "Characterization of $${\hbox {BaTiO}_{3}}$$ BaTiO 3 piezoelectric perovskite material for multilayer actuators". Bulletin of Materials Science 40, n.º 4 (28 de julho de 2017): 759–71. http://dx.doi.org/10.1007/s12034-017-1406-0.
Texto completo da fonteLi, J., J. W. Ko e W. B. Ko. "Synthesis of BaTiO3-TiO2-Graphene Nanocomposites and Kinetics Studies on their Photocatalytic Activity". Eurasian Chemico-Technological Journal 17, n.º 4 (2 de abril de 2016): 281. http://dx.doi.org/10.18321/ectj271.
Texto completo da fonteHao, Y. N., X. H. Wang, S. O'Brien, J. Lombardi e L. T. Li. "Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density". Journal of Materials Chemistry C 3, n.º 37 (2015): 9740–47. http://dx.doi.org/10.1039/c5tc01903f.
Texto completo da fontePan, Zhongbin, Lingmin Yao, Jiwei Zhai, Bo Shen, Shaohui Liu, Haitao Wang e Jinhua Liu. "Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area". Journal of Materials Chemistry A 4, n.º 34 (2016): 13259–64. http://dx.doi.org/10.1039/c6ta05233a.
Texto completo da fonteZhang, Min, e Chaoyong Deng. "Enhanced ferroelectric properties of $$\hbox {BaTiO}_3$$BaTiO3 films via rapid thermal processing". Journal of Materials Science: Materials in Electronics 31, n.º 4 (18 de janeiro de 2020): 3130–36. http://dx.doi.org/10.1007/s10854-020-02859-0.
Texto completo da fonteZHANG, HUA-MING, SHAO-YI WU, XUE-FENG WANG e YUE-XIA HU. "THEORETICAL STUDIES OF THE SPIN HAMILTONIAN PARAMETERS AND LOCAL STRUCTURE FOR THE TETRAGONAL Rh2+ CENTER IN RHOMBOHEDRAL BaTiO3". Modern Physics Letters B 23, n.º 17 (10 de julho de 2009): 2115–22. http://dx.doi.org/10.1142/s0217984909020266.
Texto completo da fonteWEI, J. H., J. SHI, Z. Y. LIU, J. G. GUAN e R. Z. YUAN. "THE CONDUCTIVITY AND TEMPERATURE DEPENDENCE OF BATIO3 COATED- PAN BASED ELECTRORHEOLOGICAL FLUIDS". International Journal of Modern Physics B 19, n.º 07n09 (10 de abril de 2005): 1423–29. http://dx.doi.org/10.1142/s0217979205030396.
Texto completo da fonteWatanabe, Takayuki, Mikio Shimada, Toshiaki Aiba, Hisato Yabuta, Kaoru Miura, Kengo Oka, Masaki Azuma, Satoshi Wada e Nobuhiro Kumada. "Structural Transformation of Hexagonal (0001)BaTiO$_{3}$ Ceramics to Tetragonal (111)BaTiO$_{3}$ Ceramics". Japanese Journal of Applied Physics 50, n.º 9 (20 de setembro de 2011): 09ND01. http://dx.doi.org/10.1143/jjap.50.09nd01.
Texto completo da fonteMathey, P., P. Jullien, P. Lompré e D. Rytz. "Photorefractive detection of antiparallel ferroelectric domains in BaTiO 3 and BaTiO 3 :Co crystals". Applied Physics A: Materials Science & Processing 66, n.º 5 (1 de maio de 1998): 511–14. http://dx.doi.org/10.1007/s003390050705.
Texto completo da fonteRajavaram, Ramaraghavulu, Junwoo Park e Joonho Lee. "Defect induced ferromagnetism in h-BaTiO 3 synthesized from t-BaTiO 3 by microwave heating". Journal of Alloys and Compounds 712 (julho de 2017): 627–32. http://dx.doi.org/10.1016/j.jallcom.2017.04.150.
Texto completo da fonteKim, Young Heon, Xubing Lu, Marco Diegel, Roland Mattheis, Dietrich Hesse e Marin Alexe. "Growth temperature dependence of crystal symmetry in Nb-doped BaTiO3 thin films". Journal of Advanced Dielectrics 03, n.º 02 (abril de 2013): 1350009. http://dx.doi.org/10.1142/s2010135x13500094.
Texto completo da fonteDevi, L. Gomathi, e P. M. Nithya. "Preparation, characterization and photocatalytic activity of BaTiF 6 and BaTiO 3 : A comparative study". Journal of Environmental Chemical Engineering 6, n.º 3 (junho de 2018): 3565–73. http://dx.doi.org/10.1016/j.jece.2017.04.038.
Texto completo da fonteRIAZ, S., S. SHAMAILA, B. KHAN e S. NASEEM. "BARIUM TITANATE FILMS FOR ELECTRONIC APPLICATIONS: STRUCTURAL AND DIELECTRIC PROPERTIES". Surface Review and Letters 15, n.º 03 (junho de 2008): 237–44. http://dx.doi.org/10.1142/s0218625x08011305.
Texto completo da fonteNunn, William, Abinash Kumar, Rui Zu, Bailey Nebgen, Shukai Yu, Anusha Kamath Manjeshwar, Venkatraman Gopalan, James M. LeBeau, Richard D. James e Bharat Jalan. "Sn-modified BaTiO3 thin film with enhanced polarization". Journal of Vacuum Science & Technology A 41, n.º 2 (março de 2023): 022701. http://dx.doi.org/10.1116/6.0002208.
Texto completo da fonteHe, Chao-Tao, Yu Lu, Xiu-Lin Li e Peng Chen. "Facilitation of compliance current for resistive switching and stability of Ta/BaTiO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>/ITO". Acta Physica Sinica 71, n.º 8 (2022): 086102. http://dx.doi.org/10.7498/aps.71.20211999.
Texto completo da fonteNeige, Ellie, e Oliver Diwald. "Paramagnetic electron centers in BaTiO3 nanoparticle powders". Physical Chemistry Chemical Physics 23, n.º 22 (2021): 12881–88. http://dx.doi.org/10.1039/d1cp01128f.
Texto completo da fonteLEE, C., M. DUPEUX e W. TUAN. "Adhesion strength of Ag/BaTiO interface". Scripta Materialia 54, n.º 3 (fevereiro de 2006): 453–57. http://dx.doi.org/10.1016/j.scriptamat.2005.10.020.
Texto completo da fonteRodríguez-Páez, J. E., F. Díaz e C. F. Villaquirán Raigoza. "Síntesis de polvos de BaTiO3 por mecanoquímica". Boletín de la Sociedad Española de Cerámica y Vidrio 41, n.º 1 (28 de fevereiro de 2002): 177–81. http://dx.doi.org/10.3989/cyv.2002.v41.i1.719.
Texto completo da fonteTian, Lihong, Xiaodong Yan, JiLian Xu, Petra Wallenmeyer, James Murowchick, Lei Liu e Xiaobo Chen. "Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles". Journal of Materials Chemistry A 3, n.º 23 (2015): 12550–56. http://dx.doi.org/10.1039/c5ta02109j.
Texto completo da fonteSharma, Savita, Monika Tomar, Ashok Kumar, Nitin K. Puri e Vinay Gupta. "Effect of insertion of low leakage polar layer on leakage current and multiferroic properties of BiFeO3/BaTiO3 multilayer structure". RSC Advances 6, n.º 64 (2016): 59150–54. http://dx.doi.org/10.1039/c6ra09326d.
Texto completo da fonteБольшакова, Наталья Николаевна, Светлана Дмитриевна Завьялова, Галина Михайловна Некрасова e Елена Михайловна Семенова. "EFFECTS OF NIOBIUM-DOPING ON THE DIELECTRIC AND SWITCHING PROPERTIES OF BARIUM TITANATE CRYSTALS". Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, n.º 12() (15 de dezembro de 2020): 42–52. http://dx.doi.org/10.26456/pcascnn/2020.12.042.
Texto completo da fonte