Literatura científica selecionada sobre o tema "Barley Genetics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Barley Genetics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Barley Genetics"
Ren, Xifeng, Yonggang Wang, Songxian Yan, Dongfa Sun e Genlou Sun. "Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley". Genome 57, n.º 4 (abril de 2014): 239–44. http://dx.doi.org/10.1139/gen-2014-0039.
Texto completo da fonteJana, S., e L. N. Pietrzak. "Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity." Genetics 119, n.º 4 (1 de agosto de 1988): 981–90. http://dx.doi.org/10.1093/genetics/119.4.981.
Texto completo da fonteNeale, D. B., M. A. Saghai-Maroof, R. W. Allard, Q. Zhang e R. A. Jorgensen. "Chloroplast DNA diversity in populations of wild and cultivated barley." Genetics 120, n.º 4 (1 de dezembro de 1988): 1105–10. http://dx.doi.org/10.1093/genetics/120.4.1105.
Texto completo da fonteTsuchiya, T. "Barley Genetics Newsletter". Hereditas 73, n.º 1 (12 de fevereiro de 2009): 162. http://dx.doi.org/10.1111/j.1601-5223.1973.tb01079.x.
Texto completo da fonteLukina, K. A., O. N. Kovaleva e I. G. Loskutov. "Naked barley: taxonomy, breeding, and prospects of utilization". Vavilov Journal of Genetics and Breeding 26, n.º 6 (9 de outubro de 2022): 524–36. http://dx.doi.org/10.18699/vjgb-22-64.
Texto completo da fonteSreenivasulu, Nese, Andreas Graner e Ulrich Wobus. "Barley Genomics: An Overview". International Journal of Plant Genomics 2008 (13 de março de 2008): 1–13. http://dx.doi.org/10.1155/2008/486258.
Texto completo da fonteRamakrishna, Wusirika, Jorge Dubcovsky, Yong-Jin Park, Carlos Busso, John Emberton, Phillip SanMiguel e Jeffrey L. Bennetzen. "Different Types and Rates of Genome Evolution Detected by Comparative Sequence Analysis of Orthologous Segments From Four Cereal Genomes". Genetics 162, n.º 3 (1 de novembro de 2002): 1389–400. http://dx.doi.org/10.1093/genetics/162.3.1389.
Texto completo da fonteKünzel, Gottfried, Larissa Korzun e Armin Meister. "Cytologically Integrated Physical Restriction Fragment Length Polymorphism Maps for the Barley Genome Based on Translocation Breakpoints". Genetics 154, n.º 1 (1 de janeiro de 2000): 397–412. http://dx.doi.org/10.1093/genetics/154.1.397.
Texto completo da fonteCho, Seungho, David F. Garvin e Gary J. Muehlbauer. "Transcriptome Analysis and Physical Mapping of Barley Genes in Wheat–Barley Chromosome Addition Lines". Genetics 172, n.º 2 (1 de dezembro de 2005): 1277–85. http://dx.doi.org/10.1534/genetics.105.049908.
Texto completo da fonteKonishi, T., e S. Matsuura. "Geographic differentiation in isozyme genotypes of Himalayan barley (Hordeum vulgare)". Genome 34, n.º 5 (1 de outubro de 1991): 704–9. http://dx.doi.org/10.1139/g91-108.
Texto completo da fonteTeses / dissertações sobre o assunto "Barley Genetics"
Collins, Nicholas C. "The genetics of barley yellow dwarf virus resistance in barley and rice". Title page, table of contents and summary only, 1996. http://hdl.handle.net/2440/46063.
Texto completo da fonteThesis (Ph.D.) -- University of Adelaide, Dept. of Plant Science, 1996
Jenkin, Mandy Jane. "Genetics of boron tolerance in barley /". Adelaide : Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phj514.pdf.
Texto completo da fonteHarvey, Andrew John. "Isolation, characterization and differential expression of Barley B-Glucan Exohydrolase genes". Title page, abstract and table of contents only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phh399.pdf.
Texto completo da fonteCaldwell, Katherine Selby. "An evaluation of the patterns of nucleotide diversity and linkage disequilibrium at the regional level in Hordeum vulgare /". Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phc1471.pdf.
Texto completo da fonteJefferies, Stephen P. "Marker assisted backcrossing for gene introgression in barley (Hordeum vulgare L.)". Title page, contents and chapter 1 only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspj45.pdf.
Texto completo da fonteEglinton, Jason Konrad. "Novel alleles from wild barley for breeding malting barley (Hordeum vulgare L.) /". Title page, abstact and table of contents only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phe313.pdf.
Texto completo da fontePatil, Vrushali. "Molecular developmental genetics of the barley internode". Thesis, University of Dundee, 2016. https://discovery.dundee.ac.uk/en/studentTheses/a7e7046a-3615-40c4-b678-200299cd0d12.
Texto completo da fonteJenkin, Mandy Jane. "Genetics of boron tolerance in barley / by Mandy Jane Jenkin". Thesis, Adelaide Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://hdl.handle.net/2440/21652.
Texto completo da fonteLiu, Shaolin 1968. "Oligonucleotides applied in genomics, bioinformatics and development of molecular markers for rice and barley". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85569.
Texto completo da fonteSmith, Ryan Anthony. "Germination and growth responses of Hordeum Vulgare SV13 cultivated as a green fodder crop for African conditions". Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2790.
Texto completo da fonteThis study evaluated the effects of 5 different soaking treatments in conjunction with 5 varying irrigation intervals on the germination, growth and nutritional values of seed of Hordeum vulgare Sv13. The 5 different soaking times consisted of 1, 3, 8, 16 and 24 hours. The barley seed was first cleaned and then placed in a vessel containing 500 ml of distilled water with a 20 % solution of sodium hypochlorite (bleach) at room temperature. Thereafter the pre-soaked seeds were transferred to a perforated container, containing no medium and placed into a growing chamber equipped with drip irrigation. The seed was then irrigated with 1245 ml of water at 5 different intervals namely every 2, 4, 8 10 and 12 hours. The temperature of the hydroponic growing room was kept at a constant 23 °C using a hotoperiod of 16-hour day/ 8-hour darkness. The seed was allowed to germinate and grow for a period of 8 days before being harvested. The objectives of this study were to determine the most beneficial combination of soaking treatment in conjunction with the most beneficial irrigation interval on the germination rate of the seed allowing for radicle emergence and coleoptile production. It was also used to determine which combination of treatments was most beneficial to the growth and nutritional values of the seed post-harvest. Another objective was to ascertain the shortest soaking time for application in a small-scale, hydroponic growing unit as well as the frequency of irrigation required to grow seedlings, thereby determining the amount of water required to produce a seedling mat for a small-scale, subsistence farmer, with the emphasis being on water reduction. Each treatment was replicated 10 times and consisted of 500 grams of seed, which when placed into its container measured 2 centimetres in depth, totalling 25 treatments in all. Germination was measured by observing radicle emergence in the first 2 days of the growing period first after a 24-hour cycle and again after 48 hours. The numbers of leaves present at harvest after an 8-day growing period were also counted to determine germination rate of the seeds. Growth was determined by average leaf height as well as the tallest leaf on day 8 of the growing cycle. Root mat expansion was also measured, post-harvest, which was compared to the initial 2 cm planting depth of seed. Wet and dry weights of the plant material were measured post-harvest. Samples of the harvested material were also sent for nitrogen and protein analysis. It was discovered that most of the results favoured a shorter soaking time and an increase in irrigation frequency, bar a few exceptions. Most favoured a pre-soaking time of only 1 hour together with an irrigation frequency of between 2 and 4 hours. This shows that small-scale farmers would be able to reduce the time spent on soaking of their seed. Although the frequency of the irrigation interval remained high further testing would be required to determine if the amount of water applied at each irrigation interval could be reduced and still produce favourable results. It would also remain to be seen if no irrigation during the 8-hour dark photoperiod would have any negative impact on germination, growth and nutritional values of the seedlings.
Livros sobre o assunto "Barley Genetics"
ll, Torbjo rn Sa. Genetic variation for recombination in barley. Svalo v: Swedish University of Agricultural Sciences, Dept. of Crop Genetics and Breeding, 1989.
Encontre o texto completo da fonteUllrich, Steven E. Barley, production, improvement, and uses. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.
Encontre o texto completo da fonteZhang, Guoping. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Encontre o texto completo da fonteZhang, Guoping, e Chengdao Li, eds. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01279-2.
Texto completo da fonteInternational, Barley Genetics Resources Workshop (1991 Helsingborg Sweden). Barley genetic resources: Report of an international barley genetic resources workshop held at Helsingborg Kongresscenter Helsingborg, Sweden, 20-21 July 1991. Rome: International Board for Plant Genetic Resources, 1992.
Encontre o texto completo da fonteKhodʹkov, L. E. Golozernye i bezostye i͡a︡chmeni. Leningrad: Izd-vo Leningradskogo universiteta, 1985.
Encontre o texto completo da fonteGrant, Bailey L., Thompson B. K e Canada Agriculture Canada, eds. Barley register =: Registre des variétés d'orge. Ottawa: Agriculture Canada, 1985.
Encontre o texto completo da fonteSaskatchewan), International Oats Conference (5th 1996 University of. V International Oat Conference & VII International Barley Genetics Symposium: Proceedings. Saskatoon: University Extension Press, 1996.
Encontre o texto completo da fonteThörn, Eva C. Selective chromosome elimination in barley: The "bulbosum-system" : possibilities and limitations in plant breeding. Svalöf: Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Encontre o texto completo da fonteSveriges lantbruksuniversitet. Institutionen för växtförädling., ed. Mutation research in barley. Svalöf: Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Barley Genetics"
von Wettstein-Knowles, Penny. "Barley Raincoats: Biosynthesis and Genetics". In Plant Molecular Biology, 305–14. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_28.
Texto completo da fonteEversole, Kellye, Andreas Graner e Nils Stein. "Wheat and Barley Genome Sequencing". In Genetics and Genomics of the Triticeae, 713–42. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_24.
Texto completo da fonteLangridge, Peter, Yang Qingwen, Dong Chongmei e Ken Chalmers. "From Genome Structure to Pragmatic Breeding of Wheat and Barley". In Stadler Genetics Symposia Series, 197–209. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4235-3_15.
Texto completo da fonteLundqvist, U. "Barley Mutants - Diversity, Genetics and Plant Breeding Value". In Current Options for Cereal Improvement, 115–28. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0893-2_11.
Texto completo da fonteBrown, James K. M. "Molecular and Population Genetics of Barley Powdery Mildew". In Advances in Molecular Genetics of Plant-Microbe Interactions, 191–98. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0177-6_29.
Texto completo da fonteKrattinger, Simon, Thomas Wicker e Beat Keller. "Map-Based Cloning of Genes in Triticeae (Wheat and Barley)". In Genetics and Genomics of the Triticeae, 337–57. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_12.
Texto completo da fonteGenc, Y., G. K. McDonald, Z. Rengel e R. D. Graham. "Genotypic Variation in the Response of Barley to Zinc Deficiency". In Plant Nutrition — Molecular Biology and Genetics, 205–21. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_24.
Texto completo da fonteForster, B. P., R. P. Ellis, A. C. Newton, R. Tuberosa, D. This, A. S. El-Gamal, M. H. Bahri e M. Ben Salem. "Molecular Breeding of Barley for Droughted Low Input Agricultural Conditions". In Plant Nutrition — Molecular Biology and Genetics, 359–63. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_40.
Texto completo da fonteWray, J. L., S. M. Ip, E. Duncanson, A. F. Gilkes e D. W. Kirk. "Biochemistry, Regulation and Genetics of Nitrite Reduction in Barley". In Inorganic Nitrogen in Plants and Microorganisms, 203–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75812-6_31.
Texto completo da fonteSmith, Frank W., Daisy H. Cybinski e Anne L. Rae. "Regulation of Expression of Genes Encoding Phosphate Transporters in Barley Roots". In Plant Nutrition — Molecular Biology and Genetics, 145–50. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Barley Genetics"
"The variability of organelle genomes in barley". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-190.
Texto completo da fonte"Targeted knockout of the NUD gene in Siberian barley". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-107.
Texto completo da fonte"Barley alloplasmic lines – the spectra of peculiar plasmon types". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-175.
Texto completo da fonte"Molecular genetic methods for assessing drought resistance of spring barley". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-142.
Texto completo da fonte"Transcriptomic changes underlying partial albinism in barley nearly isogenic line". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-169.
Texto completo da fonte"Genetics of resistance of spring barley to the agent Ustilago nuda". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-017.
Texto completo da fonte"Generation of haploidy inducers for Cas endonuclease-mediated mutagenesis in barley". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-178.
Texto completo da fonte"Comparative characteristics of barley hybrids by the anthocyanins content in grain". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-114.
Texto completo da fonte"Targeted modification of regulatory genes associated with barley grain color formation". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-047.
Texto completo da fonte"Identification and characterization of a barley gene controlling cuticle wax formation". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-061.
Texto completo da fonteRelatórios de organizações sobre o assunto "Barley Genetics"
Delmer, Deborah, Nicholas Carpita e Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, maio de 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Texto completo da fonteMawassi, Munir, Baozhong Meng e Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, julho de 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Texto completo da fonteAbbo, Shahal, Hongbin Zhang, Clarice Coyne, Amir Sherman, Dan Shtienberg e George J. Vandemark. Winter chickpea; towards a new winter pulse for the semiarid Pacific Northwest and wider adaptation in the Mediterranean basin. United States Department of Agriculture, janeiro de 2011. http://dx.doi.org/10.32747/2011.7597909.bard.
Texto completo da fonteHorwitz, Benjamin, e Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, janeiro de 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Texto completo da fonteTel-Zur, Neomi, e Jeffrey J. Doyle. Role of Polyploidy in Vine Cacti Speciation and Crop Domestication. United States Department of Agriculture, janeiro de 2012. http://dx.doi.org/10.32747/2012.7697110.bard.
Texto completo da fonte