Artigos de revistas sobre o tema "Azaacène"

Siga este link para ver outros tipos de publicações sobre o tema: Azaacène.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Azaacène".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Jakobi, Dörthe, André Schumann e Rainer Beckert. "Integrating the fluorene substructure into azaacenes: syntheses of novel fluorophores". Zeitschrift für Naturforschung B 73, n.º 7 (26 de julho de 2018): 493–500. http://dx.doi.org/10.1515/znb-2018-0023.

Texto completo da fonte
Resumo:
Abstract In this study, we report on the syntheses of novel angular fused azaacenes. For this purpose, the synthesis of the bis-diamine 2 (TABEF) could be shortened and optimized. The condensation reaction of 2 with different types of 1,2-diketones yielded new azaacene derivatives of types 10, 11 and 12. Analogously, 2 was cyclized with thionyl chloride to give the piazthiol derivative 13. The optical and electrochemical properties of all new compounds were investigated by UV/Vis absorption, fluorescence emission spectroscopy and cyclovoltammetric measurements.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wen, Keke, Xiao Pan, Songyan Feng, Wenpeng Wu, Xugeng Guo e Jinglai Zhang. "Improving the electron transport performance by changing side chains in sulfur-containing azaacenes: a combined theoretical investigation on free molecules and an adsorption system". New Journal of Chemistry 43, n.º 14 (2019): 5414–22. http://dx.doi.org/10.1039/c8nj06408c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Elter, Maximilian, Lukas Ahrens, Stella M. Luo, Frank Rominger, Jan Freudenberg, Dennis D. Cao e Uwe H. F. Bunz. "Cata ‐Annulated Azaacene Bisimides". Chemistry – A European Journal 27, n.º 48 (29 de julho de 2021): 12284–88. http://dx.doi.org/10.1002/chem.202101573.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Guevara-Level, Patricia, Simon Pascal, Olivier Siri e Denis Jacquemin. "First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes". Physical Chemistry Chemical Physics 21, n.º 41 (2019): 22910–18. http://dx.doi.org/10.1039/c9cp04835a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wang, Zongrui, Renping Li, Kexiang Zhao, Fei Yu, Jianfeng Zhao, Yonggang Zhen e Qichun Zhang. "A co-crystallization strategy toward high-performance n-type organic semiconductors through charge transport switching from p-type planar azaacene derivatives". Journal of Materials Chemistry C 10, n.º 7 (2022): 2757–62. http://dx.doi.org/10.1039/d1tc04610a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Gu, Pei-Yang, Zilong Wang, Fang-Xing Xiao, Zongqiong Lin, Rongbin Song, Qing-Feng Xu, Jian-Mei Lu, Bin Liu e Qichun Zhang. "An ambipolar azaacene as a stable photocathode for metal-free light-driven water reduction". Materials Chemistry Frontiers 1, n.º 3 (2017): 495–98. http://dx.doi.org/10.1039/c6qm00113k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gu, Pei-Yang, Guangfeng Liu, Jun Zhao, Naoki Aratani, Xin Ye, Yang Liu, Hiroko Yamada et al. "Understanding the structure-determining solid fluorescence of an azaacene derivative". Journal of Materials Chemistry C 5, n.º 34 (2017): 8869–74. http://dx.doi.org/10.1039/c7tc03089d.

Texto completo da fonte
Resumo:
Three different single crystal forms of an azaacene derivative with different fluorescence quantum yields have been obtained and the relationship between their structures and fluorescence have been studied.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wang, Zilong, Zongrui Wang, Yecheng Zhou, Peiyang Gu, Guangfeng Liu, Kexiang Zhao, Lina Nie et al. "Structure engineering: extending the length of azaacene derivatives through quinone bridges". Journal of Materials Chemistry C 6, n.º 14 (2018): 3628–33. http://dx.doi.org/10.1039/c8tc00628h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

An, Cunbin, Xin Guo e Martin Baumgarten. "Highly Ordered Phenanthroline-Fused Azaacene". Crystal Growth & Design 15, n.º 11 (6 de outubro de 2015): 5240–45. http://dx.doi.org/10.1021/acs.cgd.5b00701.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Das, Rajorshi, Michael Linseis, Stefan M. Schupp, Franciska S. Gogesch, Lukas Schmidt-Mende e Rainer F. Winter. "Organic binary charge-transfer compounds of 2,2′ : 6′,2′′ : 6′′,6-trioxotriphenylamine and a pyrene-annulated azaacene as donors". RSC Advances 13, n.º 6 (2023): 3652–60. http://dx.doi.org/10.1039/d2ra07322f.

Texto completo da fonte
Resumo:
Three binary charge-transfer (CT) compounds resulting from the donor 2,2′ : 6′,2′′ : 6′′,6-trioxotriphenylamine (TOTA) and the acceptors F4TCNQ and F4BQ and of a pyrene-annulated azaacene (PAA) with the acceptor F4TCNQ are reported.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Zhao, Jianfeng, Kai Chen, Bing Yang, Yanni Zhang, Caixia Zhu, Yinxiang Li, Qichun Zhang, Linghai Xie e Wei Huang. "Surficial nanoporous carbon with high pyridinic/pyrrolic N-Doping from sp3/sp2-N-rich azaacene dye for lithium storage". RSC Advances 7, n.º 85 (2017): 53770–77. http://dx.doi.org/10.1039/c7ra07850a.

Texto completo da fonte
Resumo:
Dye to carbon: Two rationally designed pyridinic/pyrrolic N-doped porous carbons as anodic materials could be achieved by carbonizing π-conjugated azaacene dye born with high ratio sp3/sp2-N.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Müller, Matthias, Silke Koser, Olena Tverskoy, Frank Rominger, Jan Freudenberg e Uwe H. F. Bunz. "Thiadiazolo‐Azaacenes". Chemistry – A European Journal 25, n.º 24 (26 de março de 2019): 6082–86. http://dx.doi.org/10.1002/chem.201900462.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Mateos-Martín, Javier, Marco Carini, Manuel Melle-Franco e Aurelio Mateo-Alonso. "Increasing and dispersing strain in pyrene-fused azaacenes". Chemical Communications 56, n.º 77 (2020): 11457–60. http://dx.doi.org/10.1039/d0cc04735j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Mora‐Fuentes, Juan P., Ilias Papadopoulos, Dominik Thiel, Roberto Álvarez‐Boto, Diego Cortizo‐Lacalle, Timothy Clark, Manuel Melle‐Franco, Dirk M. Guldi e Aurelio Mateo‐Alonso. "Singlet Fission in Pyrene‐Fused Azaacene Dimers". Angewandte Chemie International Edition 59, n.º 3 (27 de novembro de 2019): 1113–17. http://dx.doi.org/10.1002/anie.201911529.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ahrens, Lukas, Julian Butscher, Victor Brosius, Frank Rominger, Jan Freudenberg, Yana Vaynzof e Uwe H. F. Bunz. "Azaacene Dimers: Acceptor Materials with a Twist". Chemistry – A European Journal 26, n.º 2 (19 de dezembro de 2019): 412–18. http://dx.doi.org/10.1002/chem.201904683.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Mora‐Fuentes, Juan P., Ilias Papadopoulos, Dominik Thiel, Roberto Álvarez‐Boto, Diego Cortizo‐Lacalle, Timothy Clark, Manuel Melle‐Franco, Dirk M. Guldi e Aurelio Mateo‐Alonso. "Singlet Fission in Pyrene‐Fused Azaacene Dimers". Angewandte Chemie 132, n.º 3 (27 de novembro de 2019): 1129–33. http://dx.doi.org/10.1002/ange.201911529.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Gu, Pei-Yang, Zilong Wang e Qichun Zhang. "Azaacenes as active elements for sensing and bio applications". Journal of Materials Chemistry B 4, n.º 44 (2016): 7060–74. http://dx.doi.org/10.1039/c6tb02052f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Wu, Yuechao, Yi Jin, Jianguo Xu, Yanwen Lv e Jiangang Yu. "Recent Progress in the Synthesis and Applications of Azaacenes". Current Organic Chemistry 24, n.º 8 (23 de junho de 2020): 885–99. http://dx.doi.org/10.2174/1385272824999200427081309.

Texto completo da fonte
Resumo:
Partial substitution of CH groups in the skeletons of linearly fused phenyl rings provides an appreciable possibility to tailor their properties. Among them, azaacenes induced from a partial substitution of oligoacenes by nitrogen are one of the most promising derivatives with a view of their potential application in organic electronic devices as a novel organic n-type semiconductor. Hence this review focuses on recent progress in the synthesis of azaacenes and their applications beyond organic field-effect transistors (OFETs) such as organic light-emitting diodes (OLEDs), phototransistors, photoelectrical chemical cells, organic memory, solar cells, conductors and sensors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Ding, Fangwei, Debin Xia, Congwu Ge, Zhenchao Kang, Yulin Yang, Ruiqing Fan, Kaifeng Lin e Xike Gao. "Indenone-fused N-heteroacenes". Journal of Materials Chemistry C 7, n.º 45 (2019): 14314–19. http://dx.doi.org/10.1039/c9tc04962b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

More, Sandeep, Sunil Choudhary, Alexander Higelin, Ingo Krossing, Manuel Melle-Franco e Aurelio Mateo-Alonso. "Twisted pyrene-fused azaacenes". Chemical Communications 50, n.º 16 (2014): 1976. http://dx.doi.org/10.1039/c3cc48742c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Inoue, Yuki, Daisuke Sakamaki, Yusuke Tsutsui, Masayuki Gon, Yoshiki Chujo e Shu Seki. "Hash-Mark-Shaped Azaacene Tetramers with Axial Chirality". Journal of the American Chemical Society 140, n.º 23 (21 de maio de 2018): 7152–58. http://dx.doi.org/10.1021/jacs.8b02689.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Zhang, Zhongbo, e Qichun Zhang. "Recent progress in well-defined higher azaacenes (n ≥ 6): synthesis, molecular packing, and applications". Materials Chemistry Frontiers 4, n.º 12 (2020): 3419–32. http://dx.doi.org/10.1039/c9qm00656g.

Texto completo da fonte
Resumo:
In this review, we will focus on the recent progress in the synthetic strategies, photo-electronic properties, molecular packing modes and applications of azaacenes (n ≥ 6) with single-crystal structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Intorp, Sebastian N., Manuel Hodecker, Matthias Müller, Olena Tverskoy, Marco Rosenkranz, Evgenia Dmitrieva, Alexey A. Popov et al. "Quinoidal Azaacenes: 99 % Diradical Character". Angewandte Chemie 132, n.º 30 (28 de abril de 2020): 12496–501. http://dx.doi.org/10.1002/ange.201915977.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Intorp, Sebastian N., Manuel Hodecker, Matthias Müller, Olena Tverskoy, Marco Rosenkranz, Evgenia Dmitrieva, Alexey A. Popov et al. "Quinoidal Azaacenes: 99 % Diradical Character". Angewandte Chemie International Edition 59, n.º 30 (28 de abril de 2020): 12396–401. http://dx.doi.org/10.1002/anie.201915977.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Ganschow, Michael, Silke Koser, Manuel Hodecker, Frank Rominger, Jan Freudenberg, Andreas Dreuw e Uwe H. F. Bunz. "Azaacenes Bearing Five-Membered Rings". Chemistry - A European Journal 24, n.º 51 (10 de agosto de 2018): 13667–75. http://dx.doi.org/10.1002/chem.201802900.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Müller, Matthias, Hilmar Reiss, Olena Tverskoy, Frank Rominger, Jan Freudenberg e Uwe H. F. Bunz. "Stabilization by Benzannulation: Butterfly Azaacenes". Chemistry - A European Journal 24, n.º 49 (5 de agosto de 2018): 12801–5. http://dx.doi.org/10.1002/chem.201803118.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

More, Sandeep, Rajesh Bhosale e Aurelio Mateo-Alonso. "Low-LUMO Pyrene-Fused Azaacenes". Chemistry - A European Journal 20, n.º 34 (23 de fevereiro de 2014): 10626–31. http://dx.doi.org/10.1002/chem.201304461.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Zhou, Pengxin, Lanlan Deng, Zengtao Han, Xiaolong Zhao, Zhe Zhang e Shuhui Huo. "Benzo[de]isoquinoline-1,3-dione condensed asymmetric azaacenes as strong acceptors". RSC Advances 12, n.º 21 (2022): 13480–86. http://dx.doi.org/10.1039/d2ra01074g.

Texto completo da fonte
Resumo:
Three benzo[de]isoquinoline-1,3-dione (BQD) condensed asymmetric azaacenes, BQD-TZ, BQD-AP andBQD-PA, with different end groups, have been successfully synthesized and their structures were confirmed by single-crystal X-ray diffraction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Kang, Fangyuan, Jie Yang e Qichun Zhang. "Recent progress in pyrazinacenes containing nonbenzenoid rings: synthesis, properties and applications". Journal of Materials Chemistry C 10, n.º 7 (2022): 2475–93. http://dx.doi.org/10.1039/d1tc04340d.

Texto completo da fonte
Resumo:
This review focuses on the recent progress in the inclusion of a nonbenzenoid ring into the π-backbone of azaacenes, which can largely tune absorption, energy levels, and antiaromaticity, and produce exciting size-dependent properties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Miao, Shaobin, Jason Ji, Lei Zhu, Christopher Klug e Mark Smith. "Synthesis of Large Pyrene-Fused Azaacenes". Synthesis 47, n.º 06 (16 de janeiro de 2015): 871–74. http://dx.doi.org/10.1055/s-0034-1379965.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Schleper, A., Constantin-Christian Voll, Jens Engelhart e Timothy Swager. "Iptycene-Containing Azaacenes with Tunable Luminescence". Synlett 28, n.º 20 (19 de julho de 2017): 2783–89. http://dx.doi.org/10.1055/s-0036-1589503.

Texto completo da fonte
Resumo:
An optimized route toward iptycene-capped, p-dibromo-quinoxalinophenazine was developed, increasing the yield significantly from literature procedures. New iptycene-containing symmetrical aza­acenes were synthesized from this intermediate using Suzuki–Miyaura cross-coupling, and their photophysical properties were evaluated. Tuning the substituents allows modulating emission wavelengths across the visible spectrum. Substitution with 3-methoxy-2-methylthiophene exhibits a quantum yield of 35%. The (triisopropylsilyl)acetylene product has a quantum yield of 38% and serves as a model compound for the synthesis of polymers based on this electrooptically active molecular motif.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

More, Sandeep, Sunil Choudhary, Alexander Higelin, Ingo Krossing, Manuel Melle-Franco e Aurelio Mateo-Alonso. "ChemInform Abstract: Twisted Pyrene-Fused Azaacenes." ChemInform 45, n.º 11 (27 de fevereiro de 2014): no. http://dx.doi.org/10.1002/chin.201411108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Takeda, Takashi, Tomohiro Ikemoto, Shunsuke Yamamoto, Wakana Matsuda, Shu Seki, Masaya Mitsuishi e Tomoyuki Akutagawa. "Preparation, Electronic and Liquid Crystalline Properties of Electron-Accepting Azaacene Derivatives". ACS Omega 3, n.º 10 (19 de outubro de 2018): 13694–703. http://dx.doi.org/10.1021/acsomega.8b01943.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Chen, Chao, Huapeng Ruan, Zhongtao Feng, Yong Fang, Shuxuan Tang, Yue Zhao, Gengwen Tan, Yuanting Su e Xinping Wang. "Crystalline Diradical Dianions of Pyrene‐Fused Azaacenes". Angewandte Chemie 132, n.º 29 (18 de maio de 2020): 11892–97. http://dx.doi.org/10.1002/ange.202001842.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Chen, Chao, Huapeng Ruan, Zhongtao Feng, Yong Fang, Shuxuan Tang, Yue Zhao, Gengwen Tan, Yuanting Su e Xinping Wang. "Crystalline Diradical Dianions of Pyrene‐Fused Azaacenes". Angewandte Chemie International Edition 59, n.º 29 (18 de maio de 2020): 11794–99. http://dx.doi.org/10.1002/anie.202001842.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Min, Yang, Chuandong Dou, Hongkun Tian, Yanhou Geng, Jun Liu e Lixiang Wang. "n-Type Azaacenes Containing B←N Units". Angewandte Chemie 130, n.º 7 (2 de fevereiro de 2018): 2018–22. http://dx.doi.org/10.1002/ange.201712986.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hahn, Sebastian, Silke Koser, Manuel Hodecker, Pascal Seete, Frank Rominger, Ognjen Š. Miljanić, Andreas Dreuw e Uwe H. F. Bunz. "Phenylene Bridged Cyclic Azaacenes: Dimers and Trimers". Chemistry - A European Journal 24, n.º 27 (12 de março de 2018): 6968–74. http://dx.doi.org/10.1002/chem.201705704.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Min, Yang, Chuandong Dou, Hongkun Tian, Yanhou Geng, Jun Liu e Lixiang Wang. "n-Type Azaacenes Containing B←N Units". Angewandte Chemie International Edition 57, n.º 7 (2 de fevereiro de 2018): 2000–2004. http://dx.doi.org/10.1002/anie.201712986.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Kotwica, Kamil, Ireneusz Wielgus e Adam Proń. "Azaacenes Based Electroactive Materials: Preparation, Structure, Electrochemistry, Spectroscopy and Applications—A Critical Review". Materials 14, n.º 18 (8 de setembro de 2021): 5155. http://dx.doi.org/10.3390/ma14185155.

Texto completo da fonte
Resumo:
This short critical review is devoted to the synthesis and functionalization of various types of azaacenes, organic semiconducting compounds which can be considered as promising materials for the fabrication of n-channel or ambipolar field effect transistors (FETs), components of active layers in light emitting diodes (LEDs), components of organic memory devices and others. Emphasis is put on the diversity of azaacenes preparation methods and the possibility of tuning their redox and spectroscopic properties by changing the C/N ratio, modifying the nitrogen atoms distribution mode, functionalization with electroaccepting or electrodonating groups and changing their molecular shape. Processability, structural features and degradation pathways of these compounds are also discussed. A unique feature of this review concerns the listed redox potentials of all discussed compounds which were normalized vs. Fc/Fc+. This required, in frequent cases, recalculation of the originally reported data in which these potentials were determined against different types of reference electrodes. The same applied to all reported electron affinities (EAs). EA values calculated using different methods were recalculated by applying the method of Sworakowski and co-workers (Org. Electron. 2016, 33, 300–310) to yield, for the first time, a set of normalized data, which could be directly compared.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Gozalvez, Cristian, Jose L. Zafra, Akinori Saeki, Manuel Melle-Franco, Juan Casado e Aurelio Mateo-Alonso. "Charge transport modulation in pseudorotaxane 1D stacks of acene and azaacene derivatives". Chemical Science 10, n.º 9 (2019): 2743–49. http://dx.doi.org/10.1039/c8sc04845b.

Texto completo da fonte
Resumo:
Acenes have received a lot of attention because of their inherent and tunable absorbing, emissive, and charge transport properties for electronic, photovoltaic, and singlet fission applications, among others.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Zeplichal, Marc, Joshua Gies, Johannes Bernd, Dilan Kancious Winslaws, Tieyan Chang, Yu-Sheng Chen, Steven H. Strauss, Olga V. Boltalina e Andreas Terfort. "Fluorinated Azaacenes: Efficient Syntheses, Structures, and Electrochemical Properties". Journal of Fluorine Chemistry 257-258 (maio de 2022): 109960. http://dx.doi.org/10.1016/j.jfluchem.2022.109960.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Engelhart, Jens U., Benjamin D. Lindner, Olena Tverskoy, Frank Rominger e Uwe H. F. Bunz. "Large Azaacenes: Pyridine Rings Reacting Like Carbonyl Groups". Organic Letters 14, n.º 4 (8 de fevereiro de 2012): 1008–11. http://dx.doi.org/10.1021/ol203334u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Li, Junbo, Shao Chen, Zilong Wang e Qichun Zhang. "Pyrene-fused Acenes and Azaacenes: Synthesis and Applications". Chemical Record 16, n.º 3 (24 de maio de 2016): 1518–30. http://dx.doi.org/10.1002/tcr.201600015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gu, Pei-Yang, Ning Wang, Anyang Wu, Zilong Wang, Miaomiao Tian, Zhisheng Fu, Xiao Wei Sun e Qichun Zhang. "An Azaacene Derivative as Promising Electron-Transport Layer for Inverted Perovskite Solar Cells". Chemistry - An Asian Journal 11, n.º 15 (12 de julho de 2016): 2135–38. http://dx.doi.org/10.1002/asia.201600856.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ganschow, Michael, Silke Koser, Sebastian Hahn, Frank Rominger, Jan Freudenberg e Uwe H. F. Bunz. "Dibenzobarrelene-Based Azaacenes: Emitters in Organic Light-Emitting Diodes". Chemistry - A European Journal 23, n.º 18 (3 de março de 2017): 4415–21. http://dx.doi.org/10.1002/chem.201605820.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Liao, Hailiang, Chengyi Xiao, Mahesh Kumar Ravva, Liping Yao, Yaping Yu, Yinghe Yang, Weimin Zhang et al. "Fused Pyrazine‐ and Carbazole‐Containing Azaacenes: Synthesis and Properties". ChemPlusChem 84, n.º 9 (23 de julho de 2019): 1257–62. http://dx.doi.org/10.1002/cplu.201900383.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Müller, Matthias, Silke Koser, Olena Tverskoy, Frank Rominger, Jan Freudenberg e Uwe H. F. Bunz. "Cover Feature: Thiadiazolo‐Azaacenes (Chem. Eur. J. 24/2019)". Chemistry – A European Journal 25, n.º 24 (26 de março de 2019): 6041. http://dx.doi.org/10.1002/chem.201901123.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Min, Yang, Chuandong Dou, Dan Liu, Huanli Dong e Jun Liu. "Quadruply B←N-Fused Dibenzo-azaacene with High Electron Affinity and High Electron Mobility". Journal of the American Chemical Society 141, n.º 42 (2 de outubro de 2019): 17015–21. http://dx.doi.org/10.1021/jacs.9b09640.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Min, Yang, Changshuai Dong, Hongkun Tian, Jun Liu e Lixiang Wang. "B←N-Incorporated Dibenzo-azaacenes as n-Type Thermoelectric Materials". ACS Applied Materials & Interfaces 13, n.º 28 (6 de julho de 2021): 33321–27. http://dx.doi.org/10.1021/acsami.1c08514.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Li, Linan, Ying Gao, Chuandong Dou e Jun Liu. "B⟵N-containing azaacenes with propynyl groups on boron atoms". Chinese Chemical Letters 31, n.º 5 (maio de 2020): 1193–96. http://dx.doi.org/10.1016/j.cclet.2019.11.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia