Literatura científica selecionada sobre o tema "Autonomous and highly oscillatory differential equations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Autonomous and highly oscillatory differential equations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Autonomous and highly oscillatory differential equations"
DAVIDSON, B. D., e D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM". Mathematical Models and Methods in Applied Sciences 03, n.º 03 (junho de 1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Texto completo da fontePhilos, Ch G., I. K. Purnaras e Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS". Proceedings of the Edinburgh Mathematical Society 48, n.º 2 (23 de maio de 2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Texto completo da fonteOgorodnikova, S., e F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS". Mathematical Modelling and Analysis 11, n.º 4 (31 de dezembro de 2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Texto completo da fonteCondon, Marissa, Alfredo Deaño e Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, n.º 2118 (13 de janeiro de 2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Texto completo da fonteSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations". SIAM Journal on Numerical Analysis 46, n.º 2 (janeiro de 2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Texto completo da fontePetzold, Linda R., Laurent O. Jay e Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations". Acta Numerica 6 (janeiro de 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Texto completo da fonteCohen, David, Ernst Hairer e Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations". Foundations of Computational Mathematics 3, n.º 4 (1 de outubro de 2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Texto completo da fonteCondon, M., A. Iserles e S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2161 (8 de janeiro de 2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Texto completo da fonteHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter". Journal of Mathematical Sciences 236, n.º 3 (1 de dezembro de 2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Texto completo da fonteChartier, Philippe, Joseba Makazaga, Ander Murua e Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations". Numerische Mathematik 128, n.º 1 (17 de janeiro de 2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Texto completo da fonteTeses / dissertações sobre o assunto "Autonomous and highly oscillatory differential equations"
Bouchereau, Maxime. "Modélisation de phénomènes hautement oscillants par réseaux de neurones". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS034.
Texto completo da fonteThis thesis focuses on the application of Machine Learning to the study of highly oscillatory differential equations. More precisely, we are interested in an approach to accurately approximate the solution of a differential equation with the least amount of computations, using neural networks. First, the autonomous case is studied, where the proper- ties of backward analysis and neural networks are used to enhance existing numerical methods. Then, a generalization to the strongly oscillating case is proposed to improve a specific first-order numerical scheme tailored to this scenario. Subsequently, neural networks are employed to replace the necessary pre- computations for implementing uniformly ac- curate numerical methods to approximate so- lutions of strongly oscillating equations. This can be done either by building upon the work done for the autonomous case or by using a neural network structure that directly incorporates the equation’s structure
Khanamiryan, Marianna. "Numerical methods for systems of highly oscillatory ordinary differential equations". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226323.
Texto completo da fonteKanat, Bengi Tanoğlu Gamze. "Numerical Solution of Highly Oscillatory Differential Equations By Magnus Series Method/". [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/matematik/T000572.pdf.
Texto completo da fonteBréhier, Charles-Edouard. "Numerical analysis of highly oscillatory Stochastic PDEs". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00824693.
Texto completo da fonteLivros sobre o assunto "Autonomous and highly oscillatory differential equations"
Wu, Xinyuan, e Bin Wang. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7.
Texto completo da fonteSchütte, Christof. A quasiresonant smoothing algorithm for solving large highly oscillatory differential equations from quantum chemistry. Aachen: Verlag Shaker, 1994.
Encontre o texto completo da fonteBin, Wang, e Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer Singapore Pte. Limited, 2021.
Encontre o texto completo da fonteBin, Wang, e Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer, 2022.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Autonomous and highly oscillatory differential equations"
Hairer, Ernst, Gerhard Wanner e Christian Lubich. "Highly Oscillatory Differential Equations". In Springer Series in Computational Mathematics, 407–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05018-7_13.
Texto completo da fonteWu, Xinyuan, Xiong You e Bin Wang. "Effective Methods for Highly Oscillatory Second-Order Nonlinear Differential Equations". In Structure-Preserving Algorithms for Oscillatory Differential Equations, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35338-3_8.
Texto completo da fonteLe Bris, Claude, Frédéric Legoll e Alexei Lozinski. "MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems". In Partial Differential Equations: Theory, Control and Approximation, 265–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_11.
Texto completo da fonteWu, Xinyuan, Kai Liu e Wei Shi. "Improved Filon-Type Asymptotic Methods for Highly Oscillatory Differential Equations". In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 53–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_3.
Texto completo da fonteWu, Xinyuan, Kai Liu e Wei Shi. "Error Analysis of Explicit TSERKN Methods for Highly Oscillatory Systems". In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_8.
Texto completo da fonteWu, Xinyuan, e Bin Wang. "Symplectic Approximations for Efficiently Solving Semilinear KG Equations". In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 351–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_11.
Texto completo da fonteWu, Xinyuan, Kai Liu e Wei Shi. "Highly Accurate Explicit Symplectic ERKN Methods for Multi-frequency Oscillatory Hamiltonian Systems". In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 193–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_9.
Texto completo da fonteWu, Xinyuan, e Bin Wang. "Energy-Preserving Schemes for High-Dimensional Nonlinear KG Equations". In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 263–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_9.
Texto completo da fonteWu, Xinyuan, e Bin Wang. "Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations". In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 235–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_8.
Texto completo da fonteBensoussan, Alain. "Homogenization for Non Linear Elliptic Equations with Random Highly Oscillatory Coefficients". In Partial Differential Equations and the Calculus of Variations, 93–133. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9196-8_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Autonomous and highly oscillatory differential equations"
Kuo, Chi-Wei, e C. Steve Suh. "On Controlling Non-Autonomous Time-Delay Feedback Systems". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51128.
Texto completo da fonteFeng, Dehua, Frederick Ferguson, Yang Gao e Xinru Niu. "Investigating the Start-Up Structures and Their Evolution Within an Under-Expanded Jet Flows". In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113767.
Texto completo da fonte