Literatura científica selecionada sobre o tema "Automorphic periods"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Automorphic periods".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Automorphic periods"
Jacquet, Hervé, Erez Lapid e Jonathan Rogawski. "Periods of automorphic forms". Journal of the American Mathematical Society 12, n.º 1 (1999): 173–240. http://dx.doi.org/10.1090/s0894-0347-99-00279-9.
Texto completo da fonteFrahm, Jan, e Feng Su. "Upper bounds for geodesic periods over rank one locally symmetric spaces". Forum Mathematicum 30, n.º 5 (1 de setembro de 2018): 1065–77. http://dx.doi.org/10.1515/forum-2017-0185.
Texto completo da fonteZelditch, Steven. "geodesic periods of automorphic forms". Duke Mathematical Journal 56, n.º 2 (abril de 1988): 295–344. http://dx.doi.org/10.1215/s0012-7094-88-05613-x.
Texto completo da fonteYamana, Shunsuke. "Periods of residual automorphic forms". Journal of Functional Analysis 268, n.º 5 (março de 2015): 1078–104. http://dx.doi.org/10.1016/j.jfa.2014.11.009.
Texto completo da fonteIchino, Atsushi, e Shunsuke Yamana. "Periods of automorphic forms: the case of". Compositio Mathematica 151, n.º 4 (13 de novembro de 2014): 665–712. http://dx.doi.org/10.1112/s0010437x14007362.
Texto completo da fonteLee, Min Ho. "Mixed automorphic forms and differential equations". International Journal of Mathematics and Mathematical Sciences 13, n.º 4 (1990): 661–68. http://dx.doi.org/10.1155/s0161171290000916.
Texto completo da fonteDaughton, Austin. "A Hecke correspondence theorem for automorphic integrals with infinite log-polynomial sum period functions". International Journal of Number Theory 10, n.º 07 (9 de setembro de 2014): 1857–79. http://dx.doi.org/10.1142/s1793042114500596.
Texto completo da fonteYamana, Shunsuke. "PERIODS OF AUTOMORPHIC FORMS: THE TRILINEAR CASE". Journal of the Institute of Mathematics of Jussieu 17, n.º 1 (26 de outubro de 2015): 59–74. http://dx.doi.org/10.1017/s1474748015000377.
Texto completo da fonteZYDOR, Michal. "Periods of automorphic forms over reductive subgroups". Annales scientifiques de l'École Normale Supérieure 55, n.º 1 (2022): 141–83. http://dx.doi.org/10.24033/asens.2493.
Texto completo da fonteSharp, Richard. "Closed Geodesics and Periods of Automorphic Forms". Advances in Mathematics 160, n.º 2 (junho de 2001): 205–16. http://dx.doi.org/10.1006/aima.2001.1987.
Texto completo da fonteTeses / dissertações sobre o assunto "Automorphic periods"
Daughton, Austin James Chinault. "Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods". Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/162078.
Texto completo da fontePh.D.
Since Hecke first proved his correspondence between Dirichlet series with functional equations and automorphic forms, there have been a great number of generalizations. Of particular interest is a generalization due to Bochner that gives a correspondence between Dirichlet series with any finite number of poles that satisfy the classical functional equation and automorphic integrals with (finite) log-polynomial sum period functions. In this dissertation, we extend Bochner's result to Dirichlet series with finitely many essential singularities. With some restrictions on the underlying group and the weight, we also prove a correspondence for Dirichlet series with infinitely many poles. For this second correspondence, we provide a technique to approximate automorphic integrals with infinite log-polynomial sum period functions by automorphic integrals with finite log-polynomial period functions.
Temple University--Theses
Menes, Thibaut. "Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume". Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Texto completo da fonteLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Corbett, Andrew James. "Period integrals and L-functions in the theory of automorphic forms". Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723463.
Texto completo da fonteDimbour, William. "Solutions presque automorphes et S asymptotiquement ω– périodiques pour une classe d’équations d’évolution". Thesis, Antilles-Guyane, 2013. http://www.theses.fr/2013AGUY0599/document.
Texto completo da fonteThis thesis deals with the study of evolution equations and differential equations with piecewise constant argument. Studies of such equations were motivated by the fact that they represent a hybrid of discrete and continuous dynamical systems and combine the properties of both differential and differential-difference equations. We study the existence of almost automorphic solutions and S asymptotically omega periodic solution of evolution equations and differential equations with piecewise constant argument. The study of almost automorphic and S asymptotically omega periodic functions is motivated by the fact that these functions generalize the concept of periodic functions. Therefore, we obtain results about existence and unicity of almost automorphic and S asymptotic omega periodic solution of evolution equations. We will study this problem considering evolution equations who belong to a class of differential equation with piecewise constant argument
Boudjema, Souhila. "OSCILLATIONS DANS DES ÉQUATIONS DE LIÉNARD ET DES ÉQUATIONS D'ÉVOLUTION SEMI-LINÉAIRES". Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00903302.
Texto completo da fonteWalls, Patrick. "The Theta Correspondence and Periods of Automorphic Forms". Thesis, 2013. http://hdl.handle.net/1807/43752.
Texto completo da fonteLivros sobre o assunto "Automorphic periods"
D, Goldfeld, ed. Collected works of Hervé Jacquet. Providence, R.I: American Mathematical Society, 2011.
Encontre o texto completo da fonteN'Guerekata, Gaston M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Boston, MA: Springer US, 2001.
Encontre o texto completo da fonte1938-, Griffiths Phillip, e Kerr Matthew D. 1975-, eds. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.
Encontre o texto completo da fontePeriods and Harmonic Analysis on Spherical Varieties. Societe Mathematique De France, 2018.
Encontre o texto completo da fonteDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2013.
Encontre o texto completo da fonteAlmost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2013.
Encontre o texto completo da fonteDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2015.
Encontre o texto completo da fonteDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer London, Limited, 2013.
Encontre o texto completo da fonteNekrashevych, Volodymyr. Groups and Topological Dynamics. American Mathematical Society, 2022.
Encontre o texto completo da fonteGroups and Topological Dynamics. American Mathematical Society, 2022.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Automorphic periods"
Dou, Ze-Li, e Qiao Zhang. "Periods of automorphic forms". In Six Short Chapters on Automorphic Forms and L-functions, 17–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28708-4_2.
Texto completo da fonteShimura, Goro. "Automorphic forms and the periods of abelian varieties". In Collected Papers, 115–46. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_4.
Texto completo da fonteShimura, Goro. "The periods of certain automorphic forms of arithmetic type". In Collected Papers, 360–87. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_12.
Texto completo da fonteCornelissen, Gunther, e Oliver Lorscheid. "Toroidal Automorphic Forms, Waldspurger Periods and Double Dirichlet Series". In Multiple Dirichlet Series, L-functions and Automorphic Forms, 131–46. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8334-4_6.
Texto completo da fonteDou, Ze-Li, e Qiao Zhang. "Theta lifts and periods with respect to a quadratic extension". In Six Short Chapters on Automorphic Forms and L-functions, 99–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28708-4_6.
Texto completo da fonteShimura, Goro. "On the critical values of certain Dirichlet series and the periods of automorphic forms". In Collected Papers, 848–908. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_23.
Texto completo da fonteN’Guérékata, Gaston M. "Almost Automorphic Functions". In Almost Periodic and Almost Automorphic Functions in Abstract Spaces, 17–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73718-4_2.
Texto completo da fonteDiagana, Toka. "Almost Automorphic Functions". In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 111–40. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_4.
Texto completo da fonteGetz, Jayce R., e Heekyoung Hahn. "Distinction and Period Integrals". In An Introduction to Automorphic Representations, 371–94. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-41153-3_14.
Texto completo da fonteDiagana, Toka. "Pseudo-Almost Automorphic Functions". In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 167–88. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Automorphic periods"
Li, Lan. "Existence of Almost Periodic and Almost Automorphic Solutions for Second Order Differential Equations". In 2011 Seventh International Conference on Computational Intelligence and Security (CIS). IEEE, 2011. http://dx.doi.org/10.1109/cis.2011.332.
Texto completo da fonteArneodo, A., F. Argoul e P. Richetti. "Symbolic dynamics in the Belousov-Zhabotinskii reaction: from Rössler’s intuition to experimental evidence for Shil’nikov homoclinic chaos". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.is2.
Texto completo da fonte