Literatura científica selecionada sobre o tema "Automatic landing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Automatic landing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Automatic landing"
Liu, Mao Han, Chun Tao Li e Yi Wang. "UAV Automatic Landing Control Law". Advanced Materials Research 383-390 (novembro de 2011): 1452–57. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.1452.
Texto completo da fonteGhous, Hamid, Mubasher H. Malik, Dania Majeed, Fathima Nuzha Mohamed e Ayesha Nasir. "Evaluation of Safe Landing Site Detection Methods for Unmanned Aerial Vehicles". VAWKUM Transactions on Computer Sciences 11, n.º 1 (28 de junho de 2023): 281–94. http://dx.doi.org/10.21015/vtcs.v11i1.1474.
Texto completo da fonteRashmi Koushik et al.,, Rashmi Koushik et al ,. "Automatic Landing Control System". International Journal of Mechanical and Production Engineering Research and Development 10, n.º 3 (2020): 7639–50. http://dx.doi.org/10.24247/ijmperdjun2020726.
Texto completo da fonteCaro Fuentes, Vincenzo, Ariel Torres, Danny Luarte, Jorge E. Pezoa, Sebastián E. Godoy, Sergio N. Torres e Mauricio A. Urbina. "Digital Classification of Chilean Pelagic Species in Fishing Landing Lines". Sensors 23, n.º 19 (29 de setembro de 2023): 8163. http://dx.doi.org/10.3390/s23198163.
Texto completo da fonteBykov, V. A., S. M. Velikovskiy, A. E. Parnenkov e S. M. Shulgin. "Approach to forming of assessment of probability of making a landing of the unmanned aerial vehicle of helicopter type on the runway platform of the ship taking into account different operational modes". Radio industry (Russia) 31, n.º 2 (7 de julho de 2021): 7–14. http://dx.doi.org/10.21778/2413-9599-2021-31-2-7-14.
Texto completo da fontePlinge, Walter R. "Automatic Approach and Landing Systems". Measurement and Control 36, n.º 6 (julho de 2003): 176–80. http://dx.doi.org/10.1177/002029400303600603.
Texto completo da fonteNowak, Dariusz, Grzegorz Kopecki, Damian Kordos e Tomasz Rogalski. "The PAPI Lights-Based Vision System for Aircraft Automatic Control during Approach and Landing". Aerospace 9, n.º 6 (25 de maio de 2022): 285. http://dx.doi.org/10.3390/aerospace9060285.
Texto completo da fonteParkinson, B. W., e K. T. Fitzgibbon. "Aircraft Automatic Landing Systems Using GPS". Journal of Navigation 42, n.º 1 (janeiro de 1989): 47–59. http://dx.doi.org/10.1017/s0373463300015083.
Texto completo da fonteBubeev, Yu A., V. M. Usov, B. I. Kryuchkov, A. A. Oboznov, M. V. Mikhaylyuk e V. I. Zhelonkin. "VIRTUAL PROTOTYPING OF HELICOPTER-TYPE SPACECRAFT RADAR LANDING FOR UNDERSTANDING WHEN COSMONAUTS MAY TAKE A DECISION TO LAND A LUNAR MODULE MANUALLY". Aerospace and Environmental Medicine 56, n.º 1 (2022): 32–46. http://dx.doi.org/10.21687/0233-528x-2022-56-1-32-46.
Texto completo da fonteLiu, Hengxi, Yongzhi Wang, Shibo Wen, Jianzhong Liu, Jiaxiang Wang, Yaqin Cao, Zhiguo Meng e Yuanzhi Zhang. "A New Blind Selection Approach for Lunar Landing Zones Based on Engineering Constraints Using Sliding Window". Remote Sensing 15, n.º 12 (19 de junho de 2023): 3184. http://dx.doi.org/10.3390/rs15123184.
Texto completo da fonteTeses / dissertações sobre o assunto "Automatic landing"
Bole, Michael. "Design of an automatic landing system for twin rotor vertical take-off and landing unmanned air vehicle". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0015/MQ47834.pdf.
Texto completo da fonteGising, Andreas. "MALLS - Mobile Automatic Launch and Landing Station for VTOL UAVs". Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15980.
Texto completo da fonteThe market for vertical takeoff and landing unmanned aerial vehicles, VTOL UAVs, is growing rapidly. To reciprocate the demand of VTOL UAVs in offshore applications, CybAero has developed a novel concept for landing on moving objects called MALLS, Mobile Automatic Launch and Landing Station. MALLS can tilt its helipad and is supposed to align to either the horizontal plane with an operator adjusted offset or to the helicopter skids. Doing so, eliminates the gyroscopic forces otherwise induced in the rotordisc as the helicopter is forced to change attitude when the skids align to the ground during landing or when standing on a jolting boat with the rotor spun up. This master’s thesis project is an attempt to get the concept of MALLS closer to a quarter scale implementation. The main focus lies on the development of the measurement methods for achieving the references needed by MALLS, the hori- zontal plane and the plane of the helicopter skids. The control of MALLS is also discussed. The measurement methods developed have been proved by tested implementations or simulations. The theories behind them contain among other things signal filtering, Kalman filtering, sensor fusion and search algorithms. The project have led to that the MALLS prototype can align its helipad to the horizontal plane and that a method for measuring the relative attitude between the helipad and the helicopter skids have been developed. Also suggestions for future improvements are presented.
Caldeira, Fabrício Reis. "Design of an automatic landing system using linear quadratic tracker". Instituto Tecnológico de Aeronáutica, 2008. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=725.
Texto completo da fonteLai, Khai Ping. "A deep learning model for automatic image texture classification: Application to vision-based automatic aircraft landing". Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/97992/4/Khai_Ping_Lai_Thesis.pdf.
Texto completo da fonteHill, Steven James. "DGPS/ILS integration for an automatic landing system using Kalman Filtering". Ohio University / OhioLINK, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1178311128.
Texto completo da fonteAribal, Seckin. "Development Of An Autopilot For Automatic Landing Of An Unmanned Aerial Vehicle". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613391/index.pdf.
Texto completo da fonteSteepest Descent&rdquo
Algorithm according to the dynamic characteristics of the aircraft. Optimal altitude trajectory is used together with a lateral guidance against cross-wind disturbance. Finally, simulations including landing under crosswind, tailwind, etc., are run and the results are analyzed in order to demonstrate the performance and effectiveness of the controllers.
Magnus, Vestergren. "Automatic Takeoff and Landing of Unmanned Fixed Wing Aircrafts : A Systems Engineering Approach". Thesis, Linköpings universitet, Datorteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133078.
Texto completo da fonteTrittler, Martin [Verfasser]. "Automatic Landing for Fixed-Wing Unmanned Aerial Vehicles with Optical Sensors / Martin Trittler". Aachen : Shaker, 2018. http://d-nb.info/1162794321/34.
Texto completo da fonteHermansson, Joel. "Vision and GPS based autonomous landing of an unmanned aerial vehicle". Thesis, Linköping University, Automatic Control, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57735.
Texto completo da fonteA control system for autonomous landing of an unmanned aerial vehicle (UAV)with high precision has been developed. The UAV is a medium sized model he-licopter. Measurements from a GPS, a camera and a compass are fused with anextended Kalman filter for state estimation of the helicopter. Four PID-controllers,one for each control signal of the helicopter, are used for the helicopter control.During the final test flights fifteen landings were performed with an average land-ing accuracy of 35 cm. A bias in the GPS measurements makes it impossible to land the helicopter withhigh precision using only the GPS. Therefore, a vision system using a camera anda pattern provided landing platform has been developed. The vision system givesaccurate measurement of the 6-DOF pose of the helicopter relative the platform.These measurements are used to guide the helicopter to the landing target. Inorder to use the vision system in real time, fast image processing algorithms havebeen developed. The vision system can easily match up the with the camera framerate of 30 Hz.
Ett kontrolsystem för att autonomt landa en modellhelikopter har utvecklats.Mätdata från en GPS, en kamera samt en kompass fusioneras med ett Extend-ed Kalman Filter för tillståndsestimering av helikoptern. Fyra PID-regulatorer,en för varje kontrolsignal på helikoptern, har används för regleringen. Under densista provflygningen gjordes tre landingar av vilken den minst lyckade slutade35 cm från målet. På grund av en drift i GPS-mätningarna är det omöjligt att landa helikopternmed hög precision med bara en GPS. Därför har ett bildbehandlingssystem som an-vänder en kamera samt ett mönster på platformen utvecklats. Bidbehandlingssys-temet mäter positionen och orienteringen av helikoptern relativt platformen. Dessamätningar används kompensera för GPS-mätningarnas drift. Snabba bildbehan-dlingsalgoritmer har utvecklats för att kunna använda bildbehandlingssystemet irealtid. Systemet är mycket snabbare än 30 bilder per sekund vilket är kameranshastighet.
Lugo, Cárdenas Israel. "Autonomous take-off and landing for a fixed wing UAV". Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2364/document.
Texto completo da fonteThis work studies some of the most relevant problems in the direction of navigation and control presented in a particular class of mini‐aircraft. One of the main objectives is to build a lightweight and easy to deploy vehicle in a short period of time, an unmanned aerial vehicle capable of following a complete mission from take‐o⁄ to the following waypoints and complete the mission with an autonomous landing within a delimitated area using a graphical interface in a computer. The Trajectory Generation It is the part that tells the drone where it must travel and are generated by an algorithm built into the drone. The classic result of Dubins is used as a basis for the trajectory generation in 2D and we have extended it to the 3D trajectory generation. A path following strategy developed using the Lyapunov approach is presented to pilot a fixed wing drone across the desired path. The key concept behind the tracking controller is the reduction of the distance between the center of mass of the aircraft p and the point q on the path to zero, as well as the angle between the velocity vector and the vector tangent to the path. In order to test the techniques developed during the thesis a customized C # .Net application was developed called MAV3DSim (Multi‐Aerial Vehicle 3D Simulator). The MAV3DSim allows a read / write operation from / to the simulation engine from which we could receive all emulated sensor information and sent to the simulator. The MAV3DSim consists of three main elements, the simulation engine, the computation of the control law and the visualization interface. The simulation engine is in charge of the numeric integration of the dynamic equations of the vehicle, we can choose between a quadrotor and a xed wing drone for use in simulation. The visualization interface resembles a ground station type of application, where all variables of the vehicle s state vector can be represented on the same screen. The experimental platform functions as a test bed for the control law prototyping. The platform consists of a xed wing aircraft with a PX4 which has the autopilot function as well as a Raspberry PI mini‐computer which to the implementation of the generation and trajectory tracking. The complete system is capable of performing an autonomous take‐o⁄and landing, through waypoints. This is accomplished by using each of the strategies developed during the thesis. We have a strategy for take‐o⁄ and landing, which is generated by the navigationon part that is the trajectory generator. Once we have generated the path, it is used by the trajectory tracking strategy and withthat we have landing and take‐o⁄ autonomously
Livros sobre o assunto "Automatic landing"
Hueschen, Richard M. Implementation and flight tests for the digital integrated automatic landing system (DIALS). Hampton, Va: National Aeronautics and Space Administration ,Langley Research Center, 1986.
Encontre o texto completo da fonteZhu, Shangxiang. Automatic landing through the turbulent planetary boundary layer. [Downsview, Ont.]: Institute for Aerospace Studies, 1985.
Encontre o texto completo da fonteCenter, Langley Research, ed. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.
Encontre o texto completo da fonteDavid, McNally B., e Ames Research Center, eds. Flight test evaluation of the Stanford University/United Airlines differential GPS category III automatic landing system. Moffett Field, Calif: National Aeronautics Administration, Ames Research Center, 1995.
Encontre o texto completo da fonteGermany) International Symposium on Precision Approach and Automatic Landing (2000 Munich. International Symposium on Precision Approach and Automatic Landing, ISPA 2000, Munich, Germany, 18-20 July 2000: Symposium proceedings. Bonn: German Institute of Navigation, 2000.
Encontre o texto completo da fonteBundick, W. Thomas. Results of aircraft open-loop tests of an experimental magnetic leader cable system for guidance during roll-out and turnoff. Hampton, Va: Langley Research Center, 1990.
Encontre o texto completo da fonteB, Middleton David, Poole William L e United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Results of aircraft open-loop tests of an experimental magnetic leader cable system for guidance during roll-out and turnoff. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Encontre o texto completo da fonteB, Middleton David, Poole William L e United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Results of aircraft open-loop tests of an experimental magnetic leader cable system for guidance during roll-out and turnoff. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Encontre o texto completo da fonteErkelens, L. J. J. Investigation on MLS approach path interception and transition techniques, Part II: Flight simulator investigation. Amsterdam: National Aerospace Laboratory, 1985.
Encontre o texto completo da fonteCenter, Langley Research, ed. Automatic braking system modification for the Advanced Transport Operating System (ATOPS) Transportation System Research Vehicle (TSRV). Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Automatic landing"
Georghiou, Luke, J. Stanley Metcalfe, Michael Gibbons, Tim Ray e Janet Evans. "Smiths Industries: Aircraft Automatic Landing Equipment". In Post-Innovation Performance, 279–84. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-07455-6_35.
Texto completo da fonteMurray-Smith, D. J. "Case Study II — An Aircraft Automatic Landing System". In Continuous System Simulation, 163–73. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2504-2_11.
Texto completo da fonteAnand, Amitesh, Subhabrata Barman, Nemani Sathya Prakash, Naba Kumar Peyada e Jayashri Deb Sinha. "Vision Based Automatic Landing of Unmanned Aerial Vehicle". In Recent Advances in Intelligent Information Systems and Applied Mathematics, 102–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34152-7_8.
Texto completo da fonteJuang, Jih-Gau, e Li-Hsiang Chien. "Adaptive Fuzzy Neural Network Control for Automatic Landing System". In Computational Collective Intelligence. Technologies and Applications, 520–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16693-8_53.
Texto completo da fonteNagothu, Sudheer Kumar, e G. Anitha. "Automatic Landing Site Detection for UAV Using Supervised Classification". In Springer Series in Geomechanics and Geoengineering, 309–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77276-9_27.
Texto completo da fonteHuh, Sungsik, e David Hyunchul Shim. "A Vision-Based Automatic Landing Method for Fixed-Wing UAVs". In Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June 8–10, 2009, 217–31. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-8764-5_11.
Texto completo da fonteSuzuki, Satoshi. "Automatic Take-Off and Landing Control for Small Unmanned Helicopter". In Advances in Intelligent Systems and Computing, 155–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37374-9_16.
Texto completo da fonteSuzuki, Satoshi. "Control Scheme for Automatic Takeoff and Landing of Small Electric Helicopter". In Intelligent Systems, Control and Automation: Science and Engineering, 73–83. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54276-6_5.
Texto completo da fonteSubrahmanyam, M. Bala. "H ∞ Design of the F/A-18A Automatic Carrier Landing System". In Finite Horizon H∞ and Related Control Problems, 93–116. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-4272-7_6.
Texto completo da fonteShrestha, Manish, Sanjeeb Prasad Panday, Basanta Joshi, Aman Shakya e Rom Kant Pandey. "Automatic Pose Estimation of Micro Unmanned Aerial Vehicle for Autonomous Landing". In Intelligent Computing Methodologies, 3–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60796-8_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Automatic landing"
Zhimin, Han, e Hong Guanxin. "Landing Error Analysis of the Automatic Carrier Landing System". In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6335.
Texto completo da fonteGribanov, A. S. "Automatic Landing of a Helicopter". In 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2019. http://dx.doi.org/10.1109/fareastcon.2019.8934014.
Texto completo da fonteWang, Rongshun, Liaoni Wu e Fuqiang Bing. "Automatic Landing Control Design of Gyroplane". In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2019. http://dx.doi.org/10.1109/imcec46724.2019.8984061.
Texto completo da fonteMeng, Lin, Yang Gao, Jiachao Zhang e Liangbao Jiao. "Automatic longitudinal landing control of FanWing". In 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), editado por Xuexia Ye. SPIE, 2022. http://dx.doi.org/10.1117/12.2635153.
Texto completo da fonteNho, Kyungmoon, e Ramesh Agarwal. "Automatic landing system design using fuzzy logic". In Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4484.
Texto completo da fonteShen, Yu-Fei, Zia-ur Rahman, Dean Krusienski e Jiang Li. "Automatic detection of aircraft emergency landing sites". In SPIE Defense, Security, and Sensing, editado por Zia-ur Rahman, Stephen E. Reichenbach e Mark A. Neifeld. SPIE, 2011. http://dx.doi.org/10.1117/12.882506.
Texto completo da fonteAtmeh, Ghassan M., Wahba I. Al-Taq e Zeaid Hasan. "A Nonlinear Automatic Landing Control System for a UAV". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63264.
Texto completo da fonteShoouri, Sara, Shayan Jalili, Jiahong Xu, Isabelle Gallagher, Yuhao Zhang, Joshua Wilhelm, Jean-Baptiste Jeannin e Necmiye Ozay. "Falsification of a Vision-based Automatic Landing System". In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-0998.
Texto completo da fonteprasad B., Biju, e S. Pradeep. "Automatic Landing System Design using Feedback Linearization Method". In AIAA Infotech@Aerospace 2007 Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2733.
Texto completo da fonteMOOK, D., DOUGLAS SWANSON e MICHAEL ROEMER. "Improved noise rejection in automatic carrier landing systems". In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-3374.
Texto completo da fonteRelatórios de organizações sobre o assunto "Automatic landing"
Sinclair, Samantha, e Sally Shoop. Automated detection of austere entry landing zones : a “GRAIL Tools” validation assessment. Engineer Research and Development Center (U.S.), agosto de 2022. http://dx.doi.org/10.21079/11681/45265.
Texto completo da fonteMcQueen, Bob, ed. Unsettled Issues Concerning Urban Air Mobility Infrastructure. SAE International, novembro de 2021. http://dx.doi.org/10.4271/epr2021025.
Texto completo da fonteTzonev, Nick, e Eric Pesty. PR-396-113704-R02 Methods for Detection of Gases and VOCs from Floating Roofs of Aboveground Storage Tanks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), junho de 2013. http://dx.doi.org/10.55274/r0010794.
Texto completo da fonte