Literatura científica selecionada sobre o tema "Automatic data structuring"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Automatic data structuring".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Automatic data structuring"
Yermukhanbetova, Sharbanu, e Gulnara Bektemyssova. "AUTOMATIC MERGING AND STRUCTURING OF DATA FROM DIFFERENT CATALOGS". JP Journal of Heat and Mass Transfer, Special (4 de junho de 2020): 7–11. http://dx.doi.org/10.17654/hmsi120007.
Texto completo da fonteXiong, Wei, Chung-Mong Lee e Rui-Hua Ma. "Automatic video data structuring through shot partitioning and key-frame computing". Machine Vision and Applications 10, n.º 2 (1 de junho de 1997): 51–65. http://dx.doi.org/10.1007/s001380050059.
Texto completo da fontePryhodinuk, V. V., Yu A. Tymchenko, M. V. Nadutenko e A. Yu Gordieiev. "Automated data processing for evaluation the hydrophysical state of the Black Sea water areas". Oceanographic Journal (Problems, methods and facilities for researches of the World Ocean), n.º 2(13) (22 de abril de 2020): 114–29. http://dx.doi.org/10.37629/2709-3972.2(13).2020.114-129.
Texto completo da fonteYu, Haiyang, Shuai Yang, Zhihai Wu e Xiaolei Ma. "Vehicle trajectory reconstruction from automatic license plate reader data". International Journal of Distributed Sensor Networks 14, n.º 2 (fevereiro de 2018): 155014771875563. http://dx.doi.org/10.1177/1550147718755637.
Texto completo da fonteDovgal, Sofiia, Egor Mukhaev, Marat Sabitov e Lyubov' Adamcevich. "Development of a web service for processing data from electronic images of urban plans of land plots". Construction and Architecture 11, n.º 1 (24 de março de 2023): 17. http://dx.doi.org/10.29039/2308-0191-2022-11-1-17-17.
Texto completo da fonteKopyrin, Andrey Sergeevich, e Irina Leonidovna Makarova. "Algorithm for preprocessing and unification of time series based on machine learning for data structuring". Программные системы и вычислительные методы, n.º 3 (março de 2020): 40–50. http://dx.doi.org/10.7256/2454-0714.2020.3.33958.
Texto completo da fonteWillot, L., D. Vodislav, L. De Luca e V. Gouet-Brunet. "AUTOMATIC STRUCTURING OF PHOTOGRAPHIC COLLECTIONS FOR SPATIO-TEMPORAL MONITORING OF RESTORATION SITES: PROBLEM STATEMENT AND CHALLENGES". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-2/W1-2022 (25 de fevereiro de 2022): 521–28. http://dx.doi.org/10.5194/isprs-archives-xlvi-2-w1-2022-521-2022.
Texto completo da fonteGalauskis, Maris, e Arturs Ardavs. "The Process of Data Validation and Formatting for an Event-Based Vision Dataset in Agricultural Environments". Applied Computer Systems 26, n.º 2 (1 de dezembro de 2021): 173–77. http://dx.doi.org/10.2478/acss-2021-0021.
Texto completo da fonteKang, Tian, Shaodian Zhang, Youlan Tang, Gregory W. Hruby, Alexander Rusanov, Noémie Elhadad e Chunhua Weng. "EliIE: An open-source information extraction system for clinical trial eligibility criteria". Journal of the American Medical Informatics Association 24, n.º 6 (1 de abril de 2017): 1062–71. http://dx.doi.org/10.1093/jamia/ocx019.
Texto completo da fonteKoshman, Varvara, Anastasia Funkner e Sergey Kovalchuk. "An Unsupervised Approach to Structuring and Analyzing Repetitive Semantic Structures in Free Text of Electronic Medical Records". Journal of Personalized Medicine 12, n.º 1 (1 de janeiro de 2022): 25. http://dx.doi.org/10.3390/jpm12010025.
Texto completo da fonteTeses / dissertações sobre o assunto "Automatic data structuring"
Blettery, Emile. "Structuring heritage iconographic collections : from automatic interlinking to semi-automatic visual validation". Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2001.
Texto completo da fonteThis thesis explores automatic and semi-automatic structuring approaches for iconographic heritage contents collections. Indeed, exploiting such contents could prove beneficial for numerous applications. From virtual tourism to increased access for both researchers and the general public, structuring the collections would increase their accessibility and their use. However, the inherent "in silo" organization of those collections, each with their unique organization system hinders automatic structuring approaches and all subsequent applications. The computer vision community has proposed numerous automatic methods for indexing (and structuring) image collections at large scale. Exploiting the visual aspect of the contents, they are not impacted by the differences in metadata structures that mainly organize heritage collections, thus appearing as a potential solution to the problem of linking together unique data structures. However, those methods are trained on large, recent datasets, that do not reflect the visual diversity of iconographic heritage contents. This thesis aims at evaluating and exploiting those automatic methods for iconographic heritage contents structuring.To this end, this thesis proposes three distinct contributions with the common goal of ensuring a certain level of interpretability for the methods that are both evaluated and proposed. This interpretability is necessary to justify their efficiency to deal with such complex data but also to understand how to adapt them to new and different content. The first contribution of this thesis is an evaluation of existing state-of-the-art automatic content-based image retrieval (CBIR) approaches when faced with the different types of data composing iconographic heritage. This evaluation focuses first on image descriptors paramount for the image retrieval step and second, on re-ranking methods that re-order similar images after a first retrieval step based on another criterion. The most relevant approaches can then be selected for further use while the non-relevant ones provide insights for our second contribution. The second contribution consists of three novel re-ranking methods exploiting a more or less global spatial information to re-evaluate the relevance of visual similarity links created by the CBIR step. The first one exploits the first retrieved images to create an approximate 3D scene of the scene in which retrieved images are positioned to evaluate their coherence in the scene. The second one simplifies the first while extending the classical geometric verification setting by performing geometric query expansion, that is aggregating 2D geometric information from retrieved images to encode more largely the scene's geometry without the costly step of 3D scene creation. Finally, the third one exploits a more global location information, at dataset-level, to estimate the coherence of the visual similarity between images with regard to their spatial proximity. The third and final contribution is a framework for semi-automatic visual validation and manual correction of a collection's structuring. This framework exploits on one side the most suited automatic approaches evaluated or proposed earlier, and on the other side a graph-based visualization platform. We exploit several visual clues to focus the expert's manual intervention on impacting areas. We show that this guided semi-automatic approach has merits in terms of performance as it solves mistakes in the structuring that automatic methods can not, these corrections being then largely diffused throughout the structure, improving it even more globally.We hope our work will provide some first insights on automatically structuring heritage iconographic content with content-based approaches but also encourage further research on guided semi-automatic structuring of image collections
Cheon, Saehoon. "Experimental Frame Structuring For Automated Model Construction: Application to Simulated Weather Generation". Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195473.
Texto completo da fonteHiot, Nicolas. "Construction automatique de bases de données pour le domaine médical : Intégration de texte et maintien de la cohérence". Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1026.
Texto completo da fonteThe automatic construction of databases in the medical field represents a major challenge for guaranteeing efficient information management and facilitating decision-making. This research project focuses on the use of graph databases, an approach that offers dynamic representation and efficient querying of data and its topology. Our project explores the convergence between databases and automatic language processing, with two central objectives. In one hand, our focus is on maintaining consistency within graph databases during updates, particularly with incomplete data and specific business rules. Maintaining consistency during updates ensures a uniform level of data quality for all users and facilitates analysis. In a world of constant change, we give priority to updates, which may involve modifying the instance to accommodate new information. But how can we effectively manage these successive updates within a graph database management system? In a second hand, we focus on the integration of information extracted from text documents, a major source of data in the medical field. In particular, we are looking at clinical cases and pharmacovigilance, a crucial area for identifying the risks and adverse effects associated with the use of drugs. But, how can we detect information in texts? How can this unstructured data be efficiently integrated into a graph database? How can it be structured automatically? And finally, what is a valid structure in this context? We are particularly interested in encouraging reproducible research by adopting a transparent and documented approach to enable independent verification and validation of our results
Capítulos de livros sobre o assunto "Automatic data structuring"
Mierswa, Ingo, Katharina Morik e Michael Wurst. "Handling Local Patterns in Collaborative Structuring". In Successes and New Directions in Data Mining, 167–86. IGI Global, 2008. http://dx.doi.org/10.4018/978-1-59904-645-7.ch008.
Texto completo da fonteKoshman, Varvara, Anastasia Funkner e Sergey Kovalchuk. "An Unsupervised Approach to Structuring and Analyzing Repetitive Semantic Structures in Free Text of Electronic Medical Records". In pHealth 2021. IOS Press, 2021. http://dx.doi.org/10.3233/shti210579.
Texto completo da fonteBlanchard, Emmanuel G., Riichiro Mizoguchi e Susanne P. Lajoie. "Structuring the Cultural Domain with an Upper Ontology of Culture". In Handbook of Research on Culturally-Aware Information Technology, 179–212. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61520-883-8.ch009.
Texto completo da fonte"Chapter 1. Graphematical analysis". In LINGUISTIC ANALYZER: AUTOMATIC TRANSFORMATION OF NATURAL LANGUAGE TEXTS INTO INFORMATION DATA STRUCTURE, 16–26. St. Petersburg State University, 2019. http://dx.doi.org/10.21638/11701/9785288059278.02.
Texto completo da fonteMadhura K, Dr. "APPLICATION OF AI AND BLOCKCHAIN TECHNOLOGY IN DCMS FOR THE AUTOMATIC DOCUMENT CLASSIFICATION AND IMPROVE THE SECURITY". In Futuristic Trends in Computing Technologies and Data Sciences Volume 3 Book 3, 63–82. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bfct3p3ch5.
Texto completo da fonteHai-Jew, Shalin. "Structuring and Facilitating Online Learning through Learning/Course Management Systems". In Data Mining, 1358–75. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2455-9.ch070.
Texto completo da fonteBrilhante, Virginia, e Dave Robertson. "Metadata-Supported Automated Ecological Modelling". In Environmental Information Systems in Industry and Public Administration, 313–32. IGI Global, 2001. http://dx.doi.org/10.4018/978-1-930708-02-0.ch021.
Texto completo da fonteMazein, Ilya, Tom Gebhardt, Felix Zinkewitz, Lea Michaelis, Sarah Braun, Dagmar Waltemath, Ron Henkel e Judith A. H. Wodke. "MeDaX: A Knowledge Graph on FHIR". In Studies in Health Technology and Informatics. IOS Press, 2024. http://dx.doi.org/10.3233/shti240423.
Texto completo da fonteNehrey, Maryna, e Taras Hnot. "Data Science Tools Application for Business Processes Modelling in Aviation". In Advances in Computer and Electrical Engineering, 176–90. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7588-7.ch006.
Texto completo da fonteNehrey, Maryna, e Taras Hnot. "Data Science Tools Application for Business Processes Modelling in Aviation". In Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport, 617–31. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5357-2.ch024.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Automatic data structuring"
Pathak, Shreyasi, Jorit van Rossen, Onno Vijlbrief, Jeroen Geerdink, Christin Seifert e Maurice van Keulen. "Automatic Structuring of Breast Cancer Radiology Reports for Quality Assurance". In 2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2018. http://dx.doi.org/10.1109/icdmw.2018.00111.
Texto completo da fonteJasem, P., S. Dolinska, J. Paralic e M. Dudas. "Automatic Data Mining and Structuring for Research on Birth Defects". In 2008 6th International Symposium on Applied Machine Intelligence and Informatics (SAMI '08). IEEE, 2008. http://dx.doi.org/10.1109/sami.2008.4469151.
Texto completo da fonteSailer, Anca, Xing Wei e Ruchi Mahindru. "Enhanced Maintenance Services with Automatic Structuring of IT Problem Ticket Data". In 2008 IEEE International Conference on Services Computing (SCC). IEEE, 2008. http://dx.doi.org/10.1109/scc.2008.70.
Texto completo da fonteWei, Xing, Anca Sailer, Ruchi Mahindru e Gautam Kar. "Automatic Structuring of IT Problem Ticket Data for Enhanced Problem Resolution". In 2007 10th IFIP/IEEE International Symposium on Integrated Network Management. IEEE, 2007. http://dx.doi.org/10.1109/inm.2007.374727.
Texto completo da fonteKano Glückstad, Fumiko. "Application of an Automatic Data Alignment & Structuring System for Intercultural Consumer Segmentation Analysis". In 7th International Conference on Knowledge Engineering and Ontology Development. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005605602510256.
Texto completo da fonteZhang, Yanhao, Fanyi Wang, Weixuan Sun, Jingwen Su, Peng Liu, Yaqian Li, Xinjie Feng e Zhengxia Zou. "Matting Moments: A Unified Data-Driven Matting Engine for Mobile AIGC in Photo Gallery". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/845.
Texto completo da fonteMendoza, Isela, Fernando Silva Filho, Gustavo Medeiros, Aline Paes e Vânia O. Neves. "Comparative Analysis of Large Language Model Tools for Automated Test Data Generation from BDD". In Simpósio Brasileiro de Engenharia de Software, 280–90. Sociedade Brasileira de Computação, 2024. http://dx.doi.org/10.5753/sbes.2024.3423.
Texto completo da fonteKacerik, Martin, e Jiri Bittner. "On Importance of Scene Structure for Hardware-Accelerated Ray Tracing". In WSCG 2023 – 31. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. University of West Bohemia, Czech Republic, 2023. http://dx.doi.org/10.24132/csrn.3301.60.
Texto completo da fontePakhaev, Khusein. "Methods And Technologies Of Automation And Data Structuring In Agriculture". In International Conference "Modern trends in governance and sustainable development of socio-economic systems: from regional development to global economic growth", 627–34. European Publisher, 2024. http://dx.doi.org/10.15405/epms.2024.09.70.
Texto completo da fonteHomlong, Eirik G., Rahul P. Kumar, Ole Jakob Elle e Ola Wiig. "Automated structuring of gait data for analysis purposes - A deep learning pilot example". In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2023. http://dx.doi.org/10.1109/embc40787.2023.10340938.
Texto completo da fonte