Literatura científica selecionada sobre o tema "Auroral electrons"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Auroral electrons".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Auroral electrons"
Kozelov, Boris V., e Elena E. Titova. "Conjunction Ground Triangulation of Auroras and Magnetospheric Processes Observed by the Van Allen Probe Satellite near 6 Re". Universe 9, n.º 8 (29 de julho de 2023): 353. http://dx.doi.org/10.3390/universe9080353.
Texto completo da fonteVichare, Geeta, Ankush Bhaskar, Rahul Rawat, Virendra Yadav, Wageesh Mishra, Dorje Angchuk e Anand Kumar Singh. "Low-latitude Auroras: Insights from 2023 April 23 Solar Storm". Astrophysical Journal 977, n.º 2 (1 de dezembro de 2024): 171. https://doi.org/10.3847/1538-4357/ad8dd3.
Texto completo da fonteSamara, M., R. G. Michell, K. Asamura, M. Hirahara, D. L. Hampton e H. C. Stenbaek-Nielsen. "Ground-based observations of diffuse auroral structures in conjunction with Reimei measurements". Annales Geophysicae 28, n.º 3 (26 de março de 2010): 873–81. http://dx.doi.org/10.5194/angeo-28-873-2010.
Texto completo da fonteYahnin, A. G., V. A. Sergeev, B. B. Gvozdevsky e S. Vennerstrøm. "Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles". Annales Geophysicae 15, n.º 8 (31 de agosto de 1997): 943–58. http://dx.doi.org/10.1007/s00585-997-0943-z.
Texto completo da fonteBlixt, E. M., M. J. Kosch e J. Semeter. "Relative drift between black aurora and the ionospheric plasma". Annales Geophysicae 23, n.º 5 (27 de julho de 2005): 1611–21. http://dx.doi.org/10.5194/angeo-23-1611-2005.
Texto completo da fonteSergienko, T., I. Sandahl, B. Gustavsson, L. Andersson, U. Brändström e Å. Steen. "A study of fine structure of diffuse aurora with ALIS-FAST measurements". Annales Geophysicae 26, n.º 11 (21 de outubro de 2008): 3185–95. http://dx.doi.org/10.5194/angeo-26-3185-2008.
Texto completo da fonteBlomberg, L. G., J. A. Cumnock, I. I. Alexeev, E. S. Belenkaya, S. Yu Bobrovnikov e V. V. Kalegaev. "Transpolar aurora: time evolution, associated convection patterns, and a possible cause". Annales Geophysicae 23, n.º 5 (28 de julho de 2005): 1917–30. http://dx.doi.org/10.5194/angeo-23-1917-2005.
Texto completo da fonteKong, Wanqiu, Zejun Hu, Jiaji Wu, Tan Qu e Gwanggil Jeon. "A Comparative Study of Estimating Auroral Electron Energy from Ground-Based Hyperspectral Imagery and DMSP-SSJ5 Particle Data". Remote Sensing 12, n.º 14 (14 de julho de 2020): 2259. http://dx.doi.org/10.3390/rs12142259.
Texto completo da fonteLummerzheim, D., e J. Lilensten. "Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations". Annales Geophysicae 12, n.º 10/11 (31 de agosto de 1994): 1039–51. http://dx.doi.org/10.1007/s00585-994-1039-7.
Texto completo da fonteMilan, S. E., A. Grocott, C. Forsyth, S. M. Imber, P. D. Boakes e B. Hubert. "A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: open magnetic flux control of substorm intensity". Annales Geophysicae 27, n.º 2 (11 de fevereiro de 2009): 659–68. http://dx.doi.org/10.5194/angeo-27-659-2009.
Texto completo da fonteTeses / dissertações sobre o assunto "Auroral electrons"
Schroeder, James William Ryan. "Exploring the Alfvén-wave acceleration of auroral electrons in the laboratory". Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5846.
Texto completo da fonteHénaff, Gwendal. "Modeling, development, and test of a 3D-printed plasma camera for in-situ measurements in space". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX139.
Texto completo da fonteKey phenomena governing the dynamics of space plasmas - including charged particle acceleration, magnetic reconnection and the turbulent dissipation of electromagnetic energy - are multi-scale in nature. In order to understand their role in the Sun-Earth relationship, whether in the solar wind, at the magnetopause or in the Earth's magnetosphere, it is essential to develop instrumentation that is both compact and high-performance, enabling the deployment of satellite constellations. However, the reference instruments used to measure the energy distribution of charged particles have a limited field of view. Adding electrostatic deflection systems circumvents this limitation, with the disadvantage of making these instruments heavier, slowing down their measurement rate, and therefore reducing their performance. In this case, more sensors are needed to achieve the desired performance, impacting satellite size and, ultimately, the number of satellites that can be deployed. The characterization of charged particle fluxes for studying space weather, conducted using compact instruments with a limited field of view, faces the same limitations.The first step in this research project was to develop a method for designing a new range of plasma spectrometers that overcome these limitations. These spectrometers are based on an innovative toroidal topology, offering an instantaneous hemispherical field of view that eliminates the need for electrostatic deflectors. Their planar detection system makes them true plasma cameras. The methods developed have enabled the numerical generation and characterization by simulating a wide range of plasma cameras with different angular resolutions that could meet these various scientific needs.A model instrument was then designed to meet the challenges of space weather applications, with an energy range of up to 22 keV. It features dual ion/electron detection capability, avoiding the need for separate sensors for electron and ion measurements. Intended for nanosatellites, it has a mass of 1.8 kg and a diameter of 19 cm. A 3D-printing manufacturing process and functionalization of the material have been defined and implemented. An ion/electron conversion system using carbon foils, enabling dual use of this plasma camera, has also been developed. An instrument integrating the electrostatic optics and a simplified dual detection system has been tested under an electron beam to obtain precise experimental responses in terms of energy and angle. The beam tests showed behavior very close to the simulation, reinforcing confidence in the numerical modeling. The principle of the conversion system was tested under electron and ion beams. One of the short-term prospects of this thesis is the development, with the support of CNES, of a complete model of this plasma camera, with the aim to demonstrate in orbit the performances of this instrument dedicated to space weather applications
Ahlberg, Carl Daniel, e Wera Mauritz. "Modeling Far Ultraviolet Auroral Ovals at Ganymede". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239382.
Texto completo da fonteWerden, Scott H. "Energetic electron precipitation in the aurora as determined by X-ray imaging /". Thesis, Connect to this title online; UW restricted, 1988. http://hdl.handle.net/1773/6826.
Texto completo da fonteChua, Damien Han. "Ionospheric influence on the global characteristics of electron precipitation during auroral substorms /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/6740.
Texto completo da fonteWilliams, John Denis. "An investigation into pulsating aurora /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/6820.
Texto completo da fonteKopf, Andrew James. "A multi-instrument study of auroral hiss at Saturn". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/692.
Texto completo da fonteCardoso, Flavia Reis. "Auroral electron precipitating energy during magnetic storms with peculiar long recovery phase features". Instituto Nacional de Pesquisas Espaciais, 2010. http://urlib.net/sid.inpe.br/mtc-m19/2010/11.06.23.26.
Texto completo da fonteAurora, light emissions generated by collisions between energetic electrons and atmospheric particles, is often seen in the polar region. Although much is known about the aurora, there are still many questions unanswered. For example, it is not well known what is the source of the energetic particles or by what processes the particles are energized. Understanding the behavior of the aurora is an important scientific problem because it provides information about the processes occurring during the solar wind-magnetosphere interaction. The auroral zone is significantly affected by magnetic storms and substorms. Occasionally, magnetic storms exhibit a long recovery phase which can last for several days. During such events, the auroral electrojet can display high-intensity, long duration activity. These events are known as HILDCAA events (High Intensity Long Duration Continuous AE Activity). The power input to the magnetosphere/ionosphere carried by precipitating electrons is an important parameter which can be estimated by the Ultraviolet Imager (UVI) on board the Polar satellite. This instrument monitors the spatial morphology and temporal evolution of the aurora in the far ultraviolet range in both sunlight and darkness. Applying the necessary instrument corrections and the dayglow removal, it is possible to evaluate the energy coming into the auroral zone. Our goal is to obtain quantitative information about the energy source for magnetic storms with long (LRP) and short (SRP) recovery phases by estimating the amount of precipitation energy input. Precipitation energy has been found highly variable for LRP. A significant energy input during long storm recovery phases implies additional energy source to maintain the magnetic activity in the auroral electrojet which is believed to be related to the fluctuating solar wind magnetic field and velocity. On the other hand, IMF (interplanetary magnetic field) remained southward for a while in SRP events. All the results suggest LRP could be a consequence of a solar wind driven system and SRP would be associated to an energy unloading process.
Fillingim, Matthew Owen. "Kinetic processes in the plasma sheet observed during auroral activity /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/6824.
Texto completo da fonteWykes, William John. "Enhanced pitch angle diffusion due to stochastic electron-whistler wave-particle interactions". Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367162.
Texto completo da fonteLivros sobre o assunto "Auroral electrons"
Calvert, W. Uji lectures on the aurora: A theory of the aurora based upon electron scattering into the loss cone by the cyclotron maser instability. Iowa City, Iowa: W. Calvert, 1997.
Encontre o texto completo da fonteLazutin, Leonid L. X-Ray Emission of Auroral Electrons and Magnetospheric Dynamics. Editado por Theodore J. Rosenberg. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70398-0.
Texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Comment on "Bremsstrahlung X rays from Jovian auroral electrons". San Antonio, Tex: Southwest Research Institute, 1991.
Encontre o texto completo da fonte1953-, Snyder David B., Jongeward Gary A e United States. National Aeronautics and Space Administration., eds. Auroral interactions with ISSA. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Encontre o texto completo da fonteD, Morgan D., e United States. National Aeronautics and Space Administration., eds. Perpendicular electron heating by absorption of auroral kilometric radiation. [Washington, DC: National Aeronautics and Space Administration, 1994.
Encontre o texto completo da fonteWaite, J. H. The Jovian aurora: Electron or ion precipitation? [Washington, DC?: National Aeronautics and Space Administration, 1988.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. A comprehensive analysis of electron conical distributions from multi-satellite databases: Final report. Iowa City, IA: University of Iowa, 1994.
Encontre o texto completo da fonteR, Sharber J., e United States. National Aeronautics and Space Administration., eds. An electron sensor for the Pulsating Aurora 2 (PULSAUR 2) Mission. San Antonio, TX: Southwest Research Institute, 1996.
Encontre o texto completo da fonteH, Waite J., e United States. National Aeronautics and Space Administration., eds. Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow. [Washington, DC?: National Aeronautics and Space Administration, 1988.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. A study of the spatial scales of discrete polar auroral arcs. El Segundo, Calif: Aerospace Corp., 1989.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Auroral electrons"
Chaston, C. C. "ULF Waves and Auroral Electrons". In Magnetospheric ULF Waves: Synthesis and New Directions, 239–57. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/169gm16.
Texto completo da fonteTemerin, M., C. Carlson e J. P. Mcfadden. "The Acceleration of Electrons by Electromagnetic Ion Cyclotron Waves". In Auroral Plasma Dynamics, 155–61. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0155.
Texto completo da fonteSwift, Daniel W. "The Generation of Electric Potentials Responsible for the Acceleration of Auroral Electrons". In Physics of Auroral Arc Formation, 288–95. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm025p0288.
Texto completo da fonteLazutin, Leonid L. "Auroral Electrons in the Midnight Sector and Magnetospheric Disturbances". In Physics and Chemistry in Space, 93–154. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70398-0_4.
Texto completo da fonteWatt, C. E. J., e R. Rankin. "Alfvén Wave Acceleration of Auroral Electrons in Warm Magnetospheric Plasma". In Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, 251–60. Washington, D. C.: American Geophysical Union, 2012. http://dx.doi.org/10.1029/2011gm001171.
Texto completo da fonteBrown, D. G., P. G. Richards, J. L. Horwitz e G. R. Wilson. "Semikinetic simulation of effects of lonization by precipitating auroral electrons on ionospheric plasma transport". In Cross‐Scale Coupling in Space Plasmas, 97–103. Washington, D. C.: American Geophysical Union, 1995. http://dx.doi.org/10.1029/gm093p0097.
Texto completo da fonteNemzek, Robert J. "Diffusion of Echo 7 Electron Beams During Bounce Motion". In Auroral Plasma Dynamics, 173–81. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0173.
Texto completo da fonteKlumpar, D. M. "Statistical Distributions of the Auroral Electron Albedo in the Magnetosphere". In Auroral Plasma Dynamics, 163–71. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0163.
Texto completo da fonteLysak, Robert L. "Electron and Ion Acceleration by Strong Electrostatic Turbulence". In Physics of Auroral Arc Formation, 444–50. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm025p0444.
Texto completo da fonteKaneda, Eisuke, Toshifumi Mukai e Kunio Hirao. "Synoptic Features of Auroral System and Corresponding Electron Precipitation Observed by Kyokko". In Physics of Auroral Arc Formation, 24–30. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm025p0024.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Auroral electrons"
Dashkevich, Zh V., B. V. Kozelov, A. G. Demekhov, Y. Miyoshi, S. Kasahara, S. Yokota, A. Matsuoka et al. "Evolution of the energetic electron flux observed by ARASE satellite and simultaneous aurora in the case of March 31, 2017, 00-01 UT." In Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.022.
Texto completo da fonteWu, Ya-dong, Ya-nan Li e Shi-kui Dong. "Statistical Flux and Energy Deposition of Auroral Electrons". In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.015101.
Texto completo da fonteBallatore, Paola. "Relationship Among Pc5 Micropulsations, Auroral Activity and Relativistic Electrons: Preliminary Observations". In PLASMAS IN THE LABORATORY AND IN THE UNIVERSE: New Insights and New Challenges. AIP, 2004. http://dx.doi.org/10.1063/1.1718449.
Texto completo da fonteAshour-Abdalla, Maha, Meng Zhou, Mostafa El-Alaoui, David Schriver, Robert Richard e Raymond Walker. "The acceleration of electrons in the magnetotail and their auroral signatures". In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6051066.
Texto completo da fonteSchroeder, J. W. R., G. G. Howes, F. Skiff, C. A. Kletzing, T. A. Carter, S. Vincena e S. Dorfman. "Resonant interactions of Alfvén waves and electrons in the LAPD and the acceleration of auroral electrons". In 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2021. http://dx.doi.org/10.1109/iceaa52647.2021.9539786.
Texto completo da fonteTsurutani, B. T., G. S. Lakhina, A. Sen, P. K. Kaw, E. Echer, M. V. Alves, E. da Costa et al. "Interplanetary Alfvén Waves, HILDCAAs, Acceleration of Magnetospheric Relativistic “Killer” Electrons and Auroral Zone Heating". In 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. http://dx.doi.org/10.1190/sbgf2015-301.
Texto completo da fonteCucicov, Dorin. "Mytherrella: an interactive installation hallucinating mythological auroral formations". In 28th International Symposium on Electronic Art. Paris: Ecole des arts decoratifs - PSL, 2024. http://dx.doi.org/10.69564/isea2023-7-short-cucicov-mytherrella.
Texto completo da fonteKirillov, A. S., R. Werner e V. Guineva. "The simulation of vibrational populations of electronically excited N2and O2molecules in the middle atmosphere of the Earth during precipitations of high-energetic particles." In Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.037.
Texto completo da fonteBelakhovsky, Vladimir, Yaqi Jin e Wojciech Miloch. "Impact of the substorms and polar cap patches on GPS radio waves at polar latitudes." In Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.020.
Texto completo da fonteKleimenova, N. G., J. Manninen, T. Turunen, L. I. Gromova, Yu V. Fedorenko, A. S. Nikitenko e O. M. Lebed. "Unexpected high-frequency “birds”-type VLF emissions." In Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.008.
Texto completo da fonteRelatórios de organizações sobre o assunto "Auroral electrons"
Bounar, K. H., e W. J. McNeil. Persistence of Auroral Electron Flux Events from DMSP/F9 Electron Measurements. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1992. http://dx.doi.org/10.21236/ada251241.
Texto completo da fonteHowes, Gregory. Final Technical Report for DE-SC0014599 Physics of the Aurora: Laboratory Measurements of Electron Acceleration by Inertial Alfven Waves. Office of Scientific and Technical Information (OSTI), dezembro de 2023. http://dx.doi.org/10.2172/2251517.
Texto completo da fonte