Literatura científica selecionada sobre o tema "Audio data mining"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Audio data mining".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Audio data mining"
Xu, Shasha. "Effective Graph Mining for Educational Data Mining and Interest Recommendation". Applied Bionics and Biomechanics 2022 (12 de agosto de 2022): 1–5. http://dx.doi.org/10.1155/2022/7610124.
Texto completo da fonteXu, Yanping, e Sen Xu. "A Clustering Analysis Method for Massive Music Data". Modern Electronic Technology 5, n.º 1 (6 de maio de 2021): 24. http://dx.doi.org/10.26549/met.v5i1.6763.
Texto completo da fonteTHURAISINGHAM, BHAVANI. "MANAGING AND MINING MULTIMEDIA DATABASES". International Journal on Artificial Intelligence Tools 13, n.º 03 (setembro de 2004): 739–59. http://dx.doi.org/10.1142/s0218213004001776.
Texto completo da fonteWang, Fang. "The Effect of Multimedia Teaching Model of Music Course in Colleges and Universities Based on Classroom Audio Data Mining Technology". Tobacco Regulatory Science 7, n.º 5 (30 de setembro de 2021): 4520–31. http://dx.doi.org/10.18001/trs.7.5.2.18.
Texto completo da fontePaul, Prantosh K., e K. S. Shivraj. "Multimedia Data Mining and its Integration in Information Sector and Foundation: An Overview". Asian Journal of Computer Science and Technology 3, n.º 1 (5 de maio de 2014): 24–28. http://dx.doi.org/10.51983/ajcst-2014.3.1.1729.
Texto completo da fonteYe, Jiaxing, Takumi Kobayashi, Xiaoyan Wang, Hiroshi Tsuda e Masahiro Murakawa. "Audio Data Mining for Anthropogenic Disaster Identification: An Automatic Taxonomy Approach". IEEE Transactions on Emerging Topics in Computing 8, n.º 1 (1 de janeiro de 2020): 126–36. http://dx.doi.org/10.1109/tetc.2017.2700843.
Texto completo da fonteLi, Xaiomeng. "Construction of Teachers Performance Evaluation Index System for Data-Driven Smart Classrooms in Secondary Schools". SHS Web of Conferences 190 (2024): 03010. http://dx.doi.org/10.1051/shsconf/202419003010.
Texto completo da fonteShin, Sanghyun, Abhishek Vaidya e Inseok Hwang. "Helicopter Cockpit Audio Data Analysis to Infer Flight State Information". Journal of the American Helicopter Society 65, n.º 3 (1 de julho de 2020): 1–8. http://dx.doi.org/10.4050/jahs.65.032001.
Texto completo da fonteFaridzi, Salman Al, Faza Shafa Azizah, Faizal Mustafa, Azzahra Nindya Putri, Gilang Ramadhika, Fauzan Rizky Aditya, Ridha Sherli Fadilah et al. "PENGOLAHAN DATA: PEMAHAMAN GEMPA BUMI DI INDONESIA MELALUI PENDEKATAN DATA MINING". Jurnal Pengabdian Kolaborasi dan Inovasi IPTEKS 2, n.º 1 (16 de fevereiro de 2024): 262–70. http://dx.doi.org/10.59407/jpki2.v2i1.506.
Texto completo da fonteBhoyar, Sanjay, Punam Bhoyar, Anuj Kumar e Prabha Kiran. "Enhancing applications of surveillance through multimedia data mining". Journal of Discrete Mathematical Sciences and Cryptography 27, n.º 3 (2024): 1105–20. http://dx.doi.org/10.47974/jdmsc-1947.
Texto completo da fonteTeses / dissertações sobre o assunto "Audio data mining"
Levy, Marcel Andrew. "Ringermute an audio data mining toolkit /". abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433402.
Texto completo da fonteKohlsdorf, Daniel. "Data mining in large audio collections of dolphin signals". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53968.
Texto completo da fonteThambiratnam, Albert J. K. "Acoustic keyword spotting in speech with applications to data mining". Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/37254/1/Albert_Thambiratnam_Thesis.pdf.
Texto completo da fonteFenet, Sébastien. "Empreintes audio et stratégies d'indexation associées pour l'identification audio à grande échelle". Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0051/document.
Texto completo da fonteN this work we give a precise definition of large scale audio identification. In particular, we make a distinction between exact and approximate matching. In the first case, the goal is to match two signals coming from one same recording with different post-processings. In the second case, the goal is to match two signals that are musically similar. In light of these definitions, we conceive and evaluate different audio-fingerprint models
Fenet, Sébastien. "Empreintes audio et stratégies d'indexation associées pour l'identification audio à grande échelle". Electronic Thesis or Diss., Paris, ENST, 2013. http://www.theses.fr/2013ENST0051.
Texto completo da fonteN this work we give a precise definition of large scale audio identification. In particular, we make a distinction between exact and approximate matching. In the first case, the goal is to match two signals coming from one same recording with different post-processings. In the second case, the goal is to match two signals that are musically similar. In light of these definitions, we conceive and evaluate different audio-fingerprint models
Ferroudj, Meriem. "Detection of rain in acoustic recordings of the environment using machine learning techniques". Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/82848/1/Meriem_Ferroudj_Thesis.pdf.
Texto completo da fonteBayle, Yann. "Apprentissage automatique de caractéristiques audio : application à la génération de listes de lecture thématiques". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0087/document.
Texto completo da fonteThis doctoral dissertation presents, discusses and proposes tools for the automatic information retrieval in big musical databases.The main application is the supervised classification of musical themes to generate thematic playlists.The first chapter introduces the different contexts and concepts around big musical databases and their consumption.The second chapter focuses on the description of existing music databases as part of academic experiments in audio analysis.This chapter notably introduces issues concerning the variety and unequal proportions of the themes contained in a database, which remain complex to take into account in supervised classification.The third chapter explains the importance of extracting and developing relevant audio features in order to better describe the content of music tracks in these databases.This chapter explains several psychoacoustic phenomena and uses sound signal processing techniques to compute audio features.New methods of aggregating local audio features are proposed to improve song classification.The fourth chapter describes the use of the extracted audio features in order to sort the songs by themes and thus to allow the musical recommendations and the automatic generation of homogeneous thematic playlists.This part involves the use of machine learning algorithms to perform music classification tasks.The contributions of this dissertation are summarized in the fifth chapter which also proposes research perspectives in machine learning and extraction of multi-scale audio features
Wallace, Roy Geoffrey. "Fast and accurate phonetic spoken term detection". Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/39610/1/Roy_Wallace_Thesis.pdf.
Texto completo da fonteZiegler, Thomas. "Auswertung von Audit-Daten zur Optimierung von Workflows". [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9386075.
Texto completo da fonteWang, Tian. "Effective Thermal Resistance of Commercial Buildings Using Data Analysis of Whole-Building Electricity Data". Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1586524438396894.
Texto completo da fonteLivros sobre o assunto "Audio data mining"
Baronas, Roberto, e Maria Inês Pagliarini Cox. Linguística popular: Folk linguistics : práticas, proposições e polêmicas - homenagem a Amadeu Amaral. Campinas, SP: Pontes, 2020.
Encontre o texto completo da fonteMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. IEEE Computer Society Press, 2012.
Encontre o texto completo da fonteMultimedia information extraction: Advances in video, audio, and imagery analysis for search, data mining, surveillance, and authoring. Hoboken, N.J: Wiley, 2012.
Encontre o texto completo da fonteMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. IEEE Computer Society Press, 2012.
Encontre o texto completo da fonteMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. IEEE Computer Society Press, 2012.
Encontre o texto completo da fonteMaybury, Mark T. Multimedia Information Extraction: Advances in Video, Audio, and Imagery Analysis for Search, Data Mining, Surveillance and Authoring. Wiley & Sons, Limited, John, 2012.
Encontre o texto completo da fonteFinancial management: Fiscal year 1992 audit of the Defense Cooperation Account : report to the Congress. Washington, D.C: The Office, 1993.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Audio data mining"
Sai Tharun, A., K. Dhivakar e R. Nair Prashant. "Voice Data-Mining on Audio from Audio and Video Clips". In Smart Innovation, Systems and Technologies, 519–34. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7447-2_46.
Texto completo da fonteZheng, Meizhen, Peng Bai e Xiaodong Shi. "A Compact Phoneme-To-Audio Aligner for Singing Voice". In Advanced Data Mining and Applications, 183–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46664-9_13.
Texto completo da fonteNguyen, Cong Phuong, Ngoc Yen Pham e Eric Castelli. "First Steps to an Audio Ontology-Based Classifier for Telemedicine". In Advanced Data Mining and Applications, 845–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11811305_92.
Texto completo da fonteLiu, Qingzhong, Andrew H. Sung e Mengyu Qiao. "Spectrum Steganalysis of WAV Audio Streams". In Machine Learning and Data Mining in Pattern Recognition, 582–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03070-3_44.
Texto completo da fonteBansal, Mohit, Satya Jeet Raj Upali e Sukesha Sharma. "Early Parkinson Disease Detection Using Audio Signal Processing". In Emerging Technologies in Data Mining and Information Security, 243–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4193-1_23.
Texto completo da fonteKubera, Elżbieta, e Alicja A. Wieczorkowska. "Mining Audio Data for Multiple Instrument Recognition in Classical Music". In New Frontiers in Mining Complex Patterns, 246–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08407-7_16.
Texto completo da fonteGao, Jie, Yanqing Sun, Hongbin Suo, Qingwei Zhao e Yonghong Yan. "WAPS: An Audio Program Surveillance System for Large Scale Web Data Stream". In Web Information Systems and Mining, 116–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05250-7_13.
Texto completo da fontePark, Dong-Chul, Yunsik Lee e Dong-Min Woo. "Classification of Audio Signals Using a Bhattacharyya Kernel-Based Centroid Neural Network". In Advances in Knowledge Discovery and Data Mining, 604–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01307-2_59.
Texto completo da fonteDas, Sanghamitra, Suchibrota Dutta, Debanjan Banerjee e Arijit Ghosal. "Classification of Bharatnatyam and Kathak Dance Form Through Audio Signal". In Emerging Technologies in Data Mining and Information Security, 671–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9774-9_62.
Texto completo da fonteMuhammad, Atta, e Sher Muhammad Daudpota. "Content Based Identification of Talk Show Videos Using Audio Visual Features". In Machine Learning and Data Mining in Pattern Recognition, 267–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41920-6_20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Audio data mining"
Tao, Yudong, Samantha G. Mitsven, Lynn K. Perry, Daniel S. Messinger e Mei-Ling Shyu. "Audio-Based Group Detection for Classroom Dynamics Analysis". In 2019 International Conference on Data Mining Workshops (ICDMW). IEEE, 2019. http://dx.doi.org/10.1109/icdmw.2019.00125.
Texto completo da fonte"Improvement of Indexing Methods for Audio Fingerprinting Systems". In International Conference Data Mining, Civil and Mechanical Engineering. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0214053.
Texto completo da fonteRodrigues, João Pedro, e Emerson Paraiso. "From audio to information: Learning topics from audio transcripts". In Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/kdmile.2020.11967.
Texto completo da fonteHao, Yuan, Mohammad Shokoohi-Yekta, George Papageorgiou e Eamonn Keogh. "Parameter-Free Audio Motif Discovery in Large Data Archives". In 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.30.
Texto completo da fonteShen, Jiaxing, Oren Lederman, Jiannong Cao, Florian Berg, Shaojie Tang e Alex Pentland. "GINA: Group Gender Identification Using Privacy-Sensitive Audio Data". In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018. http://dx.doi.org/10.1109/icdm.2018.00061.
Texto completo da fonteS. N. Lagmiri e H. Bakhous. "AUDIO ENCRYPTION ALGORITHM USING HYPERCHAOTIC SYSTEMS OF DIFFERENT DIMENSIONS". In 3rd International Conference on Data Mining & Knowledge Management. AIRCC Publication Corporation, 2018. http://dx.doi.org/10.5121/csit.2018.81507.
Texto completo da fonteEbrahimi, Samaneh, Hossein Vahabi, Matthew Prockup e Oriol Nieto. "Predicting Audio Advertisement Quality". In WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159652.3159701.
Texto completo da fonteYu, Lingyun, Jun Yu e Qiang Ling. "Mining Audio, Text and Visual Information for Talking Face Generation". In 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019. http://dx.doi.org/10.1109/icdm.2019.00089.
Texto completo da fonteSageder, Gerhard, Maia Zaharieva e Matthias Zeppelzauer. "Unsupervised Selection of Robust Audio Feature Subsets". In Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014. http://dx.doi.org/10.1137/1.9781611973440.79.
Texto completo da fonteChu, Eric, e Deb Roy. "Audio-Visual Sentiment Analysis for Learning Emotional Arcs in Movies". In 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017. http://dx.doi.org/10.1109/icdm.2017.100.
Texto completo da fonteRelatórios de organizações sobre o assunto "Audio data mining"
Craven, J. A., G. McNeice, B. Powell, R. Koch, I R Annesley, G. Wood e J. Mwenifumbo. First look at data from a three-dimensional audio-magnetotelluric survey at the McArthur River mining camp, northern Saskatchewan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2003. http://dx.doi.org/10.4095/214207.
Texto completo da fonteJajodia, Sushi. Integration of Audit Data Analysis and Mining Techniques into Aide. Fort Belvoir, VA: Defense Technical Information Center, julho de 2006. http://dx.doi.org/10.21236/ada456840.
Texto completo da fonte