Literatura científica selecionada sobre o tema "Attack Detection Automation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Attack Detection Automation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Attack Detection Automation"
Wressnegger, Christian. "Efficient machine learning for attack detection". it - Information Technology 62, n.º 5-6 (16 de dezembro de 2020): 279–86. http://dx.doi.org/10.1515/itit-2020-0015.
Texto completo da fonteBeshah, Yonas Kibret, Surafel Lemma Abebe e Henock Mulugeta Melaku. "Drift Adaptive Online DDoS Attack Detection Framework for IoT System". Electronics 13, n.º 6 (7 de março de 2024): 1004. http://dx.doi.org/10.3390/electronics13061004.
Texto completo da fonteOkello, Fredrick Ochieng, Dennis Kaburu e Ndia G. John. "Automation-Based User Input Sql Injection Detection and Prevention Framework". Computer and Information Science 16, n.º 2 (2 de maio de 2023): 51. http://dx.doi.org/10.5539/cis.v16n2p51.
Texto completo da fonteHoush, Mashor, Noy Kadosh e Jack Haddad. "Detecting and Localizing Cyber-Physical Attacks in Water Distribution Systems without Records of Labeled Attacks". Sensors 22, n.º 16 (12 de agosto de 2022): 6035. http://dx.doi.org/10.3390/s22166035.
Texto completo da fonteKarthik Krishnan, T., S. Sridevi, G. Bindu e R. Anandan. "Comparison and detail study of attacks and detection methods for wireless sensor network". International Journal of Engineering & Technology 7, n.º 2.21 (20 de abril de 2018): 405. http://dx.doi.org/10.14419/ijet.v7i2.21.12453.
Texto completo da fonteYe, Shengke, Kaiye Dai, Guoli Fan, Ling Zhang e Zhihao Liang. "Exploring the intersection of network security and database communication: a PostgreSQL Socket Connection case study". Transactions on Computer Science and Intelligent Systems Research 3 (10 de abril de 2024): 1–9. http://dx.doi.org/10.62051/pzqebt34.
Texto completo da fonteSztyber-Betley, Anna, Michał Syfert, Jan Maciej Kościelny e Zuzanna Górecka. "Controller Cyber-Attack Detection and Isolation". Sensors 23, n.º 5 (3 de março de 2023): 2778. http://dx.doi.org/10.3390/s23052778.
Texto completo da fonteBinbusayyis, Adel. "Reinforcing Network Security: Network Attack Detection Using Random Grove Blend in Weighted MLP Layers". Mathematics 12, n.º 11 (31 de maio de 2024): 1720. http://dx.doi.org/10.3390/math12111720.
Texto completo da fonteKim, Ye-Eun, Yea-Sul Kim e Hwankuk Kim. "Effective Feature Selection Methods to Detect IoT DDoS Attack in 5G Core Network". Sensors 22, n.º 10 (18 de maio de 2022): 3819. http://dx.doi.org/10.3390/s22103819.
Texto completo da fonteOruganti, Rakesh, Jeeshitha J e Rama Koteswara Rao G. "A Extensive Study on DDosBotnet Attacks in Multiple Environments Using Deep Learning and Machine Learning Techniques". ECS Transactions 107, n.º 1 (24 de abril de 2022): 15181–93. http://dx.doi.org/10.1149/10701.15181ecst.
Texto completo da fonteTeses / dissertações sobre o assunto "Attack Detection Automation"
Toure, Almamy. "Collection, analysis and harnessing of communication flows for cyber-attack detection". Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0023.
Texto completo da fonteThe increasing complexity of cyberattacks, characterized by a diversification of attack techniques, an expansion of attack surfaces, and growing interconnectivity of applications with the Internet, makes network traffic management in a professional environment imperative. Companies of all types collect and analyze network flows and logs to ensure the security of exchanged data and prevent the compromise of information systems. However, techniques for collecting and processing network traffic data vary from one dataset to another, and static attack detection approaches have limitations in terms of efficiency and precision, execution time, and scalability. This thesis proposes dynamic approaches for detecting cyberattacks related to network traffic, using feature engineering based on the different communication phases of a network flow, coupled with convolutional neural networks (1D-CNN) and their feature detector. This double extraction allows for better classification of network flows, a reduction in the number of attributes and model execution times, and thus effective attack detection. Companies also face constantly evolving cyber threats, and "zero-day" attacks that exploit previously unknown vulnerabilities are becoming increasingly frequent. Detecting these zero-day attacks requires constant technological monitoring and thorough but time-consuming analysis of the exploitation of these vulnerabilities. The proposed solutions guarantee the detection of certain attack techniques. Therefore, we propose a detection framework for these attacks that covers the entire attack chain, from the data collection phase to the identification of any type of zero-day, even in a constantly evolving environment. Finally, given the obsolescence of existing datasets and data generation techniques for intrusion detection, and the fixed, non-evolving, and non-exhaustive nature of recent attack scenarios, the study of an adapted synthetic data generator while ensuring data confidentiality is addressed. The solutions proposed in this thesis optimize the detection of known and zero-day attack techniques on network flows, improve the accuracy of models, while ensuring the confidentiality and high availability of data and models, with particular attention to the applicability of the solutions in a company network
Štangler, Jan. "Architektura a správa zabezpečených sítí". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413065.
Texto completo da fonteNama, Sumanth. "Detecting attacks in building automation system". Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1597784.
Texto completo da fonteBuilding Automation System (BAS) was proposed to have the automatic centralized control of various appliances in the building such as heating, ventilating, air conditioning and other systems. Providing high security for the network layer in BAS was the major concern in recent times of studies. Researchers have been proposing different authentication protocols to stop the intruders from attacking the network, of which Time Efficient Stream Loss Authentication (TESLA) was the most secured protocol. Apart from its low computational and communicational overhead, there are few possible ways from which an intruder can attack a BAS network. Hence, to overcome this drawback we used a proposed algorithm in this paper, which uses the concept of Zero ? Knowledge Protocol (ZKP) in addition to TESLA for security. This combination of ZKP with time synchronization provides high authentication of packets in the network, thus making the network more secure and reliable. To test the security of the algorithm, we implement different wireless sensor network attacks such as sinkhole attack, and gray hole attack. Our proposed security algorithm is implemented by various WSN?s. We use Network Simulator 2 for simulation of the proposed algorithm. During the simulation, we observe detection of malicious nodes (intruders), thus proving the security of the proposed algorithm that in turn secures BAS.
Yadav, Tarun Kumar. "Automatic Detection and Prevention of Fake Key Attacks in Signal". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/9072.
Texto completo da fonteGiunta, Alberto. "Implementazione e analisi comparativa di tecniche di Face Morphing Detection". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17029/.
Texto completo da fonteGill, Rupinder S. "Intrusion detection techniques in wireless local area networks". Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/29351/1/Rupinder_Gill_Thesis.pdf.
Texto completo da fonteGill, Rupinder S. "Intrusion detection techniques in wireless local area networks". Queensland University of Technology, 2009. http://eprints.qut.edu.au/29351/.
Texto completo da fonteBláha, Lukáš. "Analýza automatizovaného generování signatur s využitím Honeypotu". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236430.
Texto completo da fonteLin, Yu-Ren, e 林育任. "Automatic Construction of Primitive Attack Templates for Primitive Attack-based Heterogeneous Intrusion Detection". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/50928028528463091853.
Texto completo da fonte國立臺灣科技大學
資訊工程系
93
The security of networked computers strongly affects network applications. Although we already have firewalls and encryption systems, intrusion still happens often. IDSs (Intrusion Detection Systems) with different techniques and characteristics have thus been developed to serve as the second layer protection. Problems associated with IDS include: (1) IDSs often produce lots of low level alerts which aren’t integrated. (2) IDSs produce lots of false alerts. (3) Heterogeneous IDSs have their specific capabilities of detecting attacks; however, their detection scopes are limited. To cope with the problems, we proposed a two-layered heterogeneous intrusion detection architecture, which advocates primitive attacks to work as a mediator for correlating alerts. The first layer is the construction and detection of primitive attacks, responsible for integrating heterogeneous alerts into primitive attacks. This equivalently transforms low-level, different formats of alerts into a unified, higher-level representation. The second layer is the correlation of attack scenarios, responsible for correlating primitive attacks into attack scenarios and reporting their priorities. This thesis focuses on improving the first layer, the construction and detection of primitive attacks, mainly by introducing a module to automatically construct primitive attack templates. The module involves the following techniques. First, we apply the constrained data mining technique to learn interactive relationships among the alerts. Second based on the interaction relationships and the support of alert ontology, we automatically create primitive attack templates. Finally, we anchor the auto-generated primitive attack templates into attack ontology. Our experiments showed the auto-generated primitive attack templates successfully subsumed all manually constructed real primitive attack templates. The contributions of the work are as follows. First, the automatic construction technique of primitive attack templates can reduce the difficulties with manual construction of primitive attack templates by experts. Second, the constrained data mining technique can effectively discover interactive relationships among (heterogeneous) alerts and allows us to use their common contents to describe the relevant attributes of a primitive attack. Finally, the completed alert ontology (including network-based and host-based alerts) comprehensively classifies the alerts attached with annotated information, not only supporting the automatic construction of primitive attack templates in this thesis but also serving as a valuable resource for design and analysis of intrusion detection systems.
Liang, Ti-Hung, e 梁滌宏. "A Study on Network ARP Attack Detection, Prevention and Automatic Connection Restoration". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/21127536084053917591.
Texto completo da fonte國立臺灣海洋大學
電機工程學系
103
This research focuses on the analysis of network attacking via the NetCut software. This kind of software will send out huge ARP( Address Resolution Protocol ) packets to the network switch, whether the attacking is occurred or not. Using this characteristic, debugging mode through the layer3 of network switch will be used to collect the ARP information. The programming language Perl will be used to analyze the amount of ARP packets periodically. When the amount of ARP packets exceed the specific guarding value, the MAC of the host running NetCut will be blocked. After the amount of ARP packets is lower than the guarding value, the MAC of that host will be unblocked. The analysis processing will be executed automatically without human intervening.
Capítulos de livros sobre o assunto "Attack Detection Automation"
Alsabbagh, Wael, e Peter Langendoerfer. "A Remote Attack Tool Against Siemens S7-300 Controllers: A Practical Report". In Technologien für die intelligente Automation, 3–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64283-2_1.
Texto completo da fonteZhang, Yanjing, Jianming Cui e Ming Liu. "Research on Adversarial Patch Attack Defense Method for Traffic Sign Detection". In Communications in Computer and Information Science, 199–210. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8285-9_15.
Texto completo da fonteDoniyorbek, Usmanbayev, e Bozorov Suhrobjon. "Analysis of Algorithm of Binary Classifiers to Improve Attack Detection Systems". In 12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022), 81–87. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51521-7_12.
Texto completo da fonteFritsch, Lothar, Aws Jaber e Anis Yazidi. "An Overview of Artificial Intelligence Used in Malware". In Communications in Computer and Information Science, 41–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_4.
Texto completo da fonteWurzenberger, Markus, Max Landauer, Agron Bajraktari e Florian Skopik. "Automatic Attack Pattern Mining for Generating Actionable CTI Applying Alert Aggregation". In Cybersecurity of Digital Service Chains, 136–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04036-8_7.
Texto completo da fonteHoyos, Isaias, Bruno Esposito e Miguel Nunez-del-Prado. "DETECTOR: Automatic Detection System for Terrorist Attack Trajectories". In Information Management and Big Data, 160–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11680-4_17.
Texto completo da fonteLebrun, Stéphanie, Stéphane Kaloustian, Raphaël Rollier e Colin Barschel. "GNSS Positioning Security: Automatic Anomaly Detection on Reference Stations". In Critical Information Infrastructures Security, 60–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93200-8_4.
Texto completo da fonteYang, Xu, Qian Li, Cong Li e Yong Qi. "Robust Malware Detection System Against Adversarial Attacks". In Advances in Intelligent Automation and Soft Computing, 1059–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81007-8_122.
Texto completo da fontePerkins, Jeff, Jordan Eikenberry, Alessandro Coglio, Daniel Willenson, Stelios Sidiroglou-Douskos e Martin Rinard. "AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks". In Detection of Intrusions and Malware, and Vulnerability Assessment, 37–57. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40667-1_3.
Texto completo da fonteJin, Shuyuan, Zhi Yang e Xiang Cui. "Automatic Covert Channel Detection in Asbestos System (Poster Abstract)". In Research in Attacks, Intrusions, and Defenses, 380–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33338-5_22.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Attack Detection Automation"
Zhang, Ruo, Guiqin Yang e Wei Zhang. "DDoS Attack Detection System Based on GBDT Under SDN". In 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1415–19. IEEE, 2024. http://dx.doi.org/10.1109/itnec60942.2024.10733143.
Texto completo da fonteZhang, Wei, Guiqin Yang e Ruo Zhang. "DDoS Attack Detection Based on Rényi-RF in SDN Environment". In 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1365–69. IEEE, 2024. http://dx.doi.org/10.1109/itnec60942.2024.10733276.
Texto completo da fonteZhu, Mengjiang, Tianfu Xu, Qun He, Rixuan Qiu, Jiang Zhu, Wei Wang e Jianye Li. "Research on APT Attack Detection Methods for Power Information Systems". In 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1866–71. IEEE, 2024. http://dx.doi.org/10.1109/itnec60942.2024.10733125.
Texto completo da fonteDesnitsky, Vasily, e Alexey Meleshko. "Modeling and Analysis of Secure Blockchain-Driven Self-Organized Decentralized Wireless Sensor Networks for Attack Detection". In 2024 International Russian Automation Conference (RusAutoCon), 199–204. IEEE, 2024. http://dx.doi.org/10.1109/rusautocon61949.2024.10694225.
Texto completo da fonteKha Nguyen, Dinh Duy, Cédric Escudero, Emil Dumitrescu e Eric Zamaï. "Actuator and Sensor Attacks Detection Method based on Attack Reconstruction". In 2024 32nd Mediterranean Conference on Control and Automation (MED). IEEE, 2024. http://dx.doi.org/10.1109/med61351.2024.10566177.
Texto completo da fonteSheng, Chen, e Chen Gang. "APT Attack and Detection Technology". In 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2024. http://dx.doi.org/10.1109/imcec59810.2024.10575432.
Texto completo da fonteQiu, Bohua, Muheng Wei, Wen Xi, Yongjie Li e Qizhong Li. "CPS Attack Detection of Ships using Particle Filter". In 2021 China Automation Congress (CAC). IEEE, 2021. http://dx.doi.org/10.1109/cac53003.2021.9728218.
Texto completo da fonteSatam, Shruti Sanjay, Akansha Anadrao Patil, Devyani Bhagwan Narkhede, Sumit Singh e Namita Pulgam. "Zero-Day Attack Detection and Prevention". In 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE, 2023. http://dx.doi.org/10.1109/iccubea58933.2023.10392272.
Texto completo da fonteGu, Tianbo, Allaukik Abhishek, Hao Fu, Huanle Zhang, Debraj Basu e Prasant Mohapatra. "Towards Learning-automation IoT Attack Detection through Reinforcement Learning". In 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). IEEE, 2020. http://dx.doi.org/10.1109/wowmom49955.2020.00029.
Texto completo da fonteRuotsalainen, Henri, Albert Treytl e Thilo Sauter. "Watermarking Based Sensor Attack Detection in Home Automation Systems". In 2021 IEEE 26th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2021. http://dx.doi.org/10.1109/etfa45728.2021.9613634.
Texto completo da fonteRelatórios de organizações sobre o assunto "Attack Detection Automation"
Berney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman e John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), abril de 2021. http://dx.doi.org/10.21079/11681/40401.
Texto completo da fonte