Literatura científica selecionada sobre o tema "Atmospheric methane"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Atmospheric methane".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Atmospheric methane"
Jensen, Sigmund, Anders Priemé e Lars Bakken. "Methanol Improves Methane Uptake in Starved Methanotrophic Microorganisms". Applied and Environmental Microbiology 64, n.º 3 (1 de março de 1998): 1143–46. http://dx.doi.org/10.1128/aem.64.3.1143-1146.1998.
Texto completo da fonteBenstead, J., G. M. King e H. G. Williams. "Methanol Promotes Atmospheric Methane Oxidation by Methanotrophic Cultures and Soils". Applied and Environmental Microbiology 64, n.º 3 (1 de março de 1998): 1091–98. http://dx.doi.org/10.1128/aem.64.3.1091-1098.1998.
Texto completo da fonteStevens, C. M. "Atmospheric methane". Chemical Geology 71, n.º 1-3 (dezembro de 1988): 11–21. http://dx.doi.org/10.1016/0009-2541(88)90102-7.
Texto completo da fonteZhou, Wencai, Xueying Qiu, Yuheng Jiang, Yingying Fan, Shilei Wei, Dongxue Han, Li Niu e Zhiyong Tang. "Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis". Journal of Materials Chemistry A 8, n.º 26 (2020): 13277–84. http://dx.doi.org/10.1039/d0ta02793f.
Texto completo da fonteArora, Vivek K., Joe R. Melton e David Plummer. "An assessment of natural methane fluxes simulated by the CLASS-CTEM model". Biogeosciences 15, n.º 15 (1 de agosto de 2018): 4683–709. http://dx.doi.org/10.5194/bg-15-4683-2018.
Texto completo da fonteCatling, D. C., M. W. Claire e K. J. Zahnle. "Anaerobic methanotrophy and the rise of atmospheric oxygen". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, n.º 1856 (18 de maio de 2007): 1867–88. http://dx.doi.org/10.1098/rsta.2007.2047.
Texto completo da fonteYarakhmedov, M. B., A. G. Kiiamov, M. E. Semenov, A. P. Semenov e A. S. Stoporev. "Peculiarities of Decomposition of Gas Hydrates in the Presence of Methanol at Atmospheric Pressure". Chemistry and Technology of Fuels and Oils 634, n.º 6 (2022): 40–43. http://dx.doi.org/10.32935/0023-1169-2022-634-6-40-43.
Texto completo da fonteKeppler, Frank, Mihály Boros, Christian Frankenberg, Jos Lelieveld, Andrew McLeod, Anna Maria Pirttilä, Thomas Röckmann e Jörg-Peter Schnitzler. "Methane formation in aerobic environments". Environmental Chemistry 6, n.º 6 (2009): 459. http://dx.doi.org/10.1071/en09137.
Texto completo da fonteSmith, H. J. "ATMOSPHERIC SCIENCE: Sourcing Methane". Science 316, n.º 5826 (11 de maio de 2007): 799b. http://dx.doi.org/10.1126/science.316.5826.799b.
Texto completo da fonteWilson, Jason. "Natural atmospheric methane contributions". Marine Pollution Bulletin 28, n.º 4 (abril de 1994): 194–95. http://dx.doi.org/10.1016/0025-326x(94)90085-x.
Texto completo da fonteTeses / dissertações sobre o assunto "Atmospheric methane"
Tice, Dane Steven. "Ground-based near-infrared remote sounding of ice giant clouds and methane". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4f09f270-a25c-4d36-96d3-13070a594eaa.
Texto completo da fonteKnappett, Diane Shirley. "Observing the distribution of atmospheric methane from space". Thesis, University of Leicester, 2012. http://hdl.handle.net/2381/10928.
Texto completo da fonteWarwick, Nicola Julie. "Global modelling of atmospheric methane and methyl bromide". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619980.
Texto completo da fonteTeama, Doaa Galal. "A 30-Year Record of the Isotopic Composition of Atmospheric Methane". Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3557627.
Texto completo da fonteMethane (CH4) is one of the most important greenhouse gases after water vapor and carbon dioxide due to its high concentration and global warming potential 25 times than that of CO2(based on a 100 year time horizon). Its atmospheric concentration has more than doubled from the preindustrial era due to anthropogenic activities such as rice cultivation, biomass burning, and fossil fuel production. However, the rate of increase of atmospheric CH4 (or the growth rate) slowed from 1980 until present. The main reason for this trend is a slowdown in the trend of CH 4sources. Measuring stable isotopes of atmospheric CH4 can constrain changes of CH4sources. The main goal of this work is to interpret the CH4 trend from 1978-2010 in terms of its sources using measurements of CH4 mixing ratio and its isotopes.
The current work presents the measurements and analysis of CH4 and its isotopes (δ13C and δD) of four air archive sample sets collected by the Oregon Graduate Institute (OGI). CH4 isotope ratios (δ13C and δD) were measured by a continuous flow isotope ratio mass spectrometer technique developed at PSU. The first set is for Cape Meares, Oregon which is the oldest and longest set and spans 1977-1999. The integrity of this sample set was evaluated by comparing between our measured CH4 mixing ratio values with those measured values by OGI and was found to be stable. Resulting CH4 seasonal cycle was evaluated from the Cape Meares data. The CH4 seasonal cycle shows a broad maximum during October-April and a minimum between July and August. The seasonal cycles of δ13C and δD have maximum values in May for δ13C and in July for δD and minimum values between September-October for δ13C and in October for δD. These results indicate a CH4 source that is more enriched January-May (e.g. biomass burning) and a source that is more depleted August-October (e.g. microbial). In addition to Cape Meares, air archive sets were analyzed from: South Pole (SPO), Samoa (SMO), Mauna Loa (MLO) 1992-1996. The presented δD measurements are unique measured values during these time periods at these stations.
To obtain the long-term in isotopic CH4 from 1978-2010, other datasets of Northern Hemisphere mid-latitude sites are included with Cape Meares. These sites are Olympic Peninsula, Washington; Montaña de Oro, California; and Niwot Ridge, Colorado. The seasonal cycles of CH4 and its isotopes from the composite dataset have the same phase and amplitudes as the Cape Meares site. CH4 growth rate shows a decrease over time 1978-2010 with three main spikes in 1992, 1998, and 2003 consistent with the literature from the global trend. CH4 lifetime is estimated to 9.7 yrs. The δ13C trend in the composite data shows a slow increase from 1978-1987, a more rapid rate of change 1987-2005, and a gradual depletion during 2005-2010. The δD trend in the composite data shows a gradual increase during 1978-2001 and decrease from 2001-2005. From these results, the global CH4 emissions are estimated and show a leveling off sources 1982-2010 with two large peak anomalies in 1998 and 2003. The global average δ13C and δD of CH 4 sources are estimated from measured values. The results of these calculations indicate that there is more than one source which controls the decrease in the global CH4 trend. From 1982-2001, δ13C and δD of CH4 sources becomes more depleted due to a decrease in fossil and/or biomass burning sources relative to microbial sources. From 2005-2010, δ 13C of CH4 sources returns to its 1981 value. There are two significant peaks in δ13C and δD of CH 4 sources in 1998 and 2003 due to the wildfire emissions in boreal areas and in Europe.
Butterworth, Anna Lucy. "Determination of the combined isotopic composition of atmospheric methane". Thesis, Open University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264463.
Texto completo da fonteButenhoff, Christopher Lee. "Investigation of the sources and sinks of atmospheric methane". PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/2813.
Texto completo da fonteWecht, Kevin James. "Quantifying Methane Emissions Using Satellite Observations". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11252.
Texto completo da fonteEarth and Planetary Sciences
Srong, E. Kimberley. "Spectral parameters of methane for remote sounding of the Jovian atmosphere". Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:0f870f86-c546-461d-aca7-61f1ccc249df.
Texto completo da fonteSnover, Amy Katherine. "The stable hydrogen isotopic composition of methane emitted from biomass burning and removed by oxic soils : application to the atmospheric methane budget /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11570.
Texto completo da fonteBräunlich, Maya. "Study of atmospheric carbon monoxide and methane Untersuchung von atmosphärischen Kohlenmonoxid und Methan anhand von Isotopenmessungen /". [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8832641.
Texto completo da fonteLivros sobre o assunto "Atmospheric methane"
Khalil, Mohammad Aslam Khan, ed. Atmospheric Methane. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1.
Texto completo da fonteKhalil, M. A. K. 1950-, North Atlantic Treaty Organization. Scientific Affairs Division. e NATO Advanced Research Workshop on the Atmospheric Methane Cycle: Sources, Sinks, Distributions, and Role in Global Change (1991 : Portland, Or.), eds. Atmospheric methane: Sources, sinks, and role in global change. Berlin: Springer-Verlag, 1993.
Encontre o texto completo da fonteM, Bruhl Christoph, Thompson Anne M e United States. National Aeronautics and Space Administration., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. [Washington, DC: National Aeronautics and Space Administration, 1993.
Encontre o texto completo da fonteH, Bruhl Christoph, Thompson Anne M e United States. Environmental Protection Agency., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. [Washington, D.C: U.S. Environmental Protection Agency, 1992.
Encontre o texto completo da fonteM, McIntosh Catherine, e Environmental Research Laboratories (U.S.), eds. Atmospheric CH₄ seasonal cycles and latitude gradient from the NOAA CMDL cooperative air sampling network : Forecast Systems Laboratory, Boulder, Colorado, August 1996. Boulder, Colo: United States Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1996.
Encontre o texto completo da fonteKhalil, M. A. K., ed. Atmospheric Methane: Sources, Sinks, and Role in Global Change. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84605-2.
Texto completo da fonteWorkshop, WMO/UNEP Intergovernmental Panel on Climate Change International IPCC. Methane and nitrous oxide: Methods in national emissions inventories and options for control : proceedings, Euroase Hotel, Amersfoort, the Netherlands, 3-5 February 1993. Bilthoven, the Netherlands: National Institute of Public Health and Environmental Protection, 1993.
Encontre o texto completo da fonteSteele, L. Paul. Atmospheric methane concentrations: The NOAA/CMDL Global Cooperative Flask Sampling Network, 1983-1988. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1991.
Encontre o texto completo da fonteLang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.
Encontre o texto completo da fonteLang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Atmospheric methane"
Khalil, M. A. K. "Atmospheric Methane: An Introduction". In Atmospheric Methane, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_1.
Texto completo da fonteShearer, M. J., e M. A. K. Khalil. "Rice Agriculture: Emissions". In Atmospheric Methane, 170–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_10.
Texto completo da fonteLevine, Joel S., Wesley R. Cofer e Joseph P. Pinto. "Biomass Burning". In Atmospheric Methane, 190–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_11.
Texto completo da fonteMatthews, Elaine. "Wetlands". In Atmospheric Methane, 202–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_12.
Texto completo da fonteThorneloe, Susan A., Morton A. Barlaz, Rebecca Peer, L. C. Huff, Lee Davis e Joe Mangino. "Waste Management". In Atmospheric Methane, 234–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_13.
Texto completo da fonteKirchgessner, David A. "Fossil Fuel Industries". In Atmospheric Methane, 263–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_14.
Texto completo da fonteJudd, A. G. "Geological Sources of Methane". In Atmospheric Methane, 280–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_15.
Texto completo da fonteWuebbles, Donald J., Katharine A. S. Hayhoe e Rao Kotamarthi. "Methane in the Global Environment". In Atmospheric Methane, 304–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_16.
Texto completo da fonteChappellaz, J., D. Raynaud, T. Blunier e B. Stauffer. "The Ice Core Record of Atmospheric Methane". In Atmospheric Methane, 9–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_2.
Texto completo da fonteStevens, C. M., e M. Wahlen. "The Isotopic Composition of Atmospheric Methane and Its Sources". In Atmospheric Methane, 25–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Atmospheric methane"
Tsvetova, Elena A. "Modeling of hydrodynamics of water-methane heterogeneous system". In XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, editado por Oleg A. Romanovskii. SPIE, 2015. http://dx.doi.org/10.1117/12.2205998.
Texto completo da fonteMeng, Lichun, Andreas Fix, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen e Peter John Rodrigo. "Upconversion Detector for Methane Atmospheric Sensor". In Optics and Photonics for Energy and the Environment. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ee.2017.ew4b.2.
Texto completo da fonteJarem, John M., Joseph H. Pierluissi e William W. Ng. "A Transmittance Model For Atmospheric Methane". In 28th Annual Technical Symposium, editado por Richard A. Mollicone e Irving J. Spiro. SPIE, 1985. http://dx.doi.org/10.1117/12.945011.
Texto completo da fonteFiedler, Michael, C. Goelz e Ulrich Platt. "Nonresonant photoacoustic monitoring of atmospheric methane". In Environmental Sensing '92, editado por Harold I. Schiff e Ulrich Platt. SPIE, 1993. http://dx.doi.org/10.1117/12.140227.
Texto completo da fonteTanichev, Aleksandr S. "Method for fast modeling ν2 Raman band of methane". In 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, editado por Oleg A. Romanovskii e Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603359.
Texto completo da fonteVoitsekhovskaya, Olga, Vitaliy Loskutov, Olga V. Shefer e Danila Kashirskii. "Transmission of radiant energy by gas-aerosol medium containing methane". In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, editado por Oleg A. Romanovskii e Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2284933.
Texto completo da fonteAgeev, Boris, e Yury Ponomarev. "Estimate of methane-capacity of aerogel samples of different compositions". In XXIV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, editado por Oleg A. Romanovskii e Gennadii G. Matvienko. SPIE, 2018. http://dx.doi.org/10.1117/12.2503956.
Texto completo da fonteGong, Weihua, Qinduan Zhang, Tingting Zhang, TONGYU LIU, ZHAOWEI WANG e YUBIN WEI. "Study on laser methane remote sensor based on TDLAS". In Atmospheric and Environmental Optics, editado por Liang Xu, Jianguo Liu e Jian Gao. SPIE, 2023. http://dx.doi.org/10.1117/12.2651953.
Texto completo da fontePestunov, Dmitriy A., Valentina M. Domysheva, Maria V. Sakirko, Artem M. Shamrin e Mikhail V. Panchenko. "Methane in the atmosphere and surface water of Lake Baikal". In 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, editado por Oleg A. Romanovskii e Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603722.
Texto completo da fontePetrov, Dmitry V., Ivan I. Matrosov, Danila O. Sedinkin e Alexey R. Zaripov. "Raman spectra of n-pentane and isopentane in a methane environment". In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, editado por Oleg A. Romanovskii e Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2286321.
Texto completo da fonteRelatórios de organizações sobre o assunto "Atmospheric methane"
Strand, Stuart, Neil Bruce, Liz Rylott e Long Zhang. Phytoremediation of Atmospheric Methane. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada579442.
Texto completo da fonteButenhoff, Christopher. Investigation of the sources and sinks of atmospheric methane. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.2807.
Texto completo da fonteSafta, Cosmin, Ray Bambha e Hope Michelsen. Estimating Regional Methane Emissions Through Atmospheric Measurements and Inverse Modeling. Office of Scientific and Technical Information (OSTI), setembro de 2019. http://dx.doi.org/10.2172/1569345.
Texto completo da fonteTeama, Doaa. A 30-Year Record of the Isotopic Composition of Atmospheric Methane. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.642.
Texto completo da fonteCostigan, Keeley Rochelle, e Manvendra Krishna Dubey. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners. Office of Scientific and Technical Information (OSTI), julho de 2015. http://dx.doi.org/10.2172/1193618.
Texto completo da fonteLauvaux, Thomas. TA [2] Continuous, regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions. Office of Scientific and Technical Information (OSTI), dezembro de 2017. http://dx.doi.org/10.2172/1417183.
Texto completo da fonteMcFarlane, Karis J. Final Report for Wetlands as a Source of Atmospheric Methane: A Multiscale and Multidisciplinary Approach. Office of Scientific and Technical Information (OSTI), outubro de 2016. http://dx.doi.org/10.2172/1333394.
Texto completo da fonteJacobson, A. R., J. B. Miller, A. Ballantyne, S. Basu, L. Bruhwiler, A. Chatterjee, S. Denning e L. Ott. Chapter 8: Observations of Atmospheric Carbon Dioxide and Methane. Second State of the Carbon Cycle Report. Editado por N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao e Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch8.
Texto completo da fonteBarns, D., e J. Edmonds. An evaluation of the relationship between the production and use of energy and atmospheric methane emissions. Office of Scientific and Technical Information (OSTI), abril de 1990. http://dx.doi.org/10.2172/6970106.
Texto completo da fonteBostrom, Gregory. Development of a Portable Cavity Ring-Down Spectroscopic Technique for Measuring Stable Isotopes in Atmospheric Methane. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.51.
Texto completo da fonte