Artigos de revistas sobre o tema "Atmospheric lifetime"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Atmospheric lifetime".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sonnemann, G. R., e M. Grygalashvyly. "Effective CO<sub>2</sub> lifetime and future CO<sub>2</sub> levels based on fit function". Annales Geophysicae 31, n.º 9 (27 de setembro de 2013): 1591–96. http://dx.doi.org/10.5194/angeo-31-1591-2013.
Texto completo da fonteRoelofs, G. J. "A steady-state analysis of the temperature responses of water vapor and aerosol lifetimes". Atmospheric Chemistry and Physics 13, n.º 16 (21 de agosto de 2013): 8245–54. http://dx.doi.org/10.5194/acp-13-8245-2013.
Texto completo da fonteTakahashi, K., T. Nakayama, Y. Matsumi, S. Solomon, T. Gejo, E. Shigemasa e T. J. Wallington. "Atmospheric lifetime of SF5CF3". Geophysical Research Letters 29, n.º 15 (agosto de 2002): 7–1. http://dx.doi.org/10.1029/2002gl015356.
Texto completo da fonteHoffmann, L., C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones et al. "Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies". Atmospheric Chemistry and Physics 14, n.º 22 (27 de novembro de 2014): 12479–97. http://dx.doi.org/10.5194/acp-14-12479-2014.
Texto completo da fonteSodemann, Harald. "Beyond Turnover Time: Constraining the Lifetime Distribution of Water Vapor from Simple and Complex Approaches". Journal of the Atmospheric Sciences 77, n.º 2 (10 de janeiro de 2020): 413–33. http://dx.doi.org/10.1175/jas-d-18-0336.1.
Texto completo da fontePatten, K. O., e D. J. Wuebbles. "Atmospheric lifetimes and ozone depletion potentials of trans-1-chloro-3,3,3-trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model". Atmospheric Chemistry and Physics Discussions 10, n.º 7 (2 de julho de 2010): 16637–57. http://dx.doi.org/10.5194/acpd-10-16637-2010.
Texto completo da fonteRoelofs, G. J. "Aerosol lifetime and climate change". Atmospheric Chemistry and Physics Discussions 12, n.º 7 (4 de julho de 2012): 16493–514. http://dx.doi.org/10.5194/acpd-12-16493-2012.
Texto completo da fonteKepros, John G., e Greg Davidson. "Atmospheric Heating and Hubble's Lifetime". Physics Today 47, n.º 1 (janeiro de 1994): 68–69. http://dx.doi.org/10.1063/1.2808393.
Texto completo da fonteEllis, D. A., J. W. Martin, S. A. Mabury, M. D. Hurley, M. P. Sulbaek Andersen e T. J. Wallington. "Atmospheric Lifetime of Fluorotelomer Alcohols". Environmental Science & Technology 37, n.º 17 (setembro de 2003): 3816–20. http://dx.doi.org/10.1021/es034136j.
Texto completo da fonteFischer, Gaston. "Atmospheric lifetime of carbon dioxide". Population and Environment 10, n.º 3 (março de 1989): 177–81. http://dx.doi.org/10.1007/bf01257903.
Texto completo da fontePatten, K. O., e D. J. Wuebbles. "Atmospheric lifetimes and Ozone Depletion Potentials of trans-1-chloro-3,3,3-trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model". Atmospheric Chemistry and Physics 10, n.º 22 (19 de novembro de 2010): 10867–74. http://dx.doi.org/10.5194/acp-10-10867-2010.
Texto completo da fonteBrown, A. T., C. M. Volk, M. R. Schoeberl, C. D. Boone e P. F. Bernath. "Stratospheric lifetimes of CFC-12, CCl<sub>4</sub>, CH<sub>4</sub>, CH<sub>3</sub>Cl and N<sub>2</sub>O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)". Atmospheric Chemistry and Physics Discussions 13, n.º 2 (14 de fevereiro de 2013): 4221–87. http://dx.doi.org/10.5194/acpd-13-4221-2013.
Texto completo da fonteHoffmann, L., C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones et al. "Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies". Atmospheric Chemistry and Physics Discussions 14, n.º 11 (25 de junho de 2014): 16865–906. http://dx.doi.org/10.5194/acpd-14-16865-2014.
Texto completo da fonteWilliams, Jonathan, e Akima Ringsdorf. "Human odour thresholds are tuned to atmospheric chemical lifetimes". Philosophical Transactions of the Royal Society B: Biological Sciences 375, n.º 1800 (20 de abril de 2020): 20190274. http://dx.doi.org/10.1098/rstb.2019.0274.
Texto completo da fonteWang, Peidong, Jeffery R. Scott, Susan Solomon, John Marshall, Andrew R. Babbin, Megan Lickley, David W. J. Thompson, Timothy DeVries, Qing Liang e Ronald G. Prinn. "On the effects of the ocean on atmospheric CFC-11 lifetimes and emissions". Proceedings of the National Academy of Sciences 118, n.º 12 (15 de março de 2021): e2021528118. http://dx.doi.org/10.1073/pnas.2021528118.
Texto completo da fonteRigby, M., R. G. Prinn, S. O'Doherty, S. A. Montzka, A. McCulloch, C. M. Harth, J. Mühle et al. "Re-evaluation of the lifetimes of the major CFCs and CH<sub>3</sub>CCl<sub>3</sub> using atmospheric trends". Atmospheric Chemistry and Physics 13, n.º 5 (6 de março de 2013): 2691–702. http://dx.doi.org/10.5194/acp-13-2691-2013.
Texto completo da fonteLarin, I. K. "Odd oxygen and its atmospheric lifetime". Russian Journal of Physical Chemistry B 11, n.º 2 (março de 2017): 375–79. http://dx.doi.org/10.1134/s1990793117020075.
Texto completo da fonteCape, J. N., M. Coyle e P. Dumitrean. "The atmospheric lifetime of black carbon". Atmospheric Environment 59 (novembro de 2012): 256–63. http://dx.doi.org/10.1016/j.atmosenv.2012.05.030.
Texto completo da fonteKennett, E. J., e R. Toumi. "Temperature dependence of atmospheric moisture lifetime". Geophysical Research Letters 32, n.º 19 (outubro de 2005): n/a. http://dx.doi.org/10.1029/2005gl023936.
Texto completo da fonteKopylov, S. N., P. S. Kopylov, I. P. Eltyshev e I. R. Begishev. "Characteristics of Impact on the Atmosphere of Perfluorisohexenes - Promising Components of Gas Extinguishing Compositions". Journal of Physics: Conference Series 2389, n.º 1 (1 de dezembro de 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2389/1/012003.
Texto completo da fonteMiller-Ricci, Eliza, Sara Seager e Dimitar Sasselov. "The Atmospheres of Extrasolar Super-Earths". Proceedings of the International Astronomical Union 4, S253 (maio de 2008): 263–71. http://dx.doi.org/10.1017/s1743921308026483.
Texto completo da fonteCroft, B., J. R. Pierce e R. V. Martin. "Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements". Atmospheric Chemistry and Physics 14, n.º 8 (30 de abril de 2014): 4313–25. http://dx.doi.org/10.5194/acp-14-4313-2014.
Texto completo da fonteJäggi, Noah, Diana Gamborino, Dan J. Bower, Paolo A. Sossi, Aaron S. Wolf, Apurva V. Oza, Audrey Vorburger, André Galli e Peter Wurz. "Evolution of Mercury’s Earliest Atmosphere". Planetary Science Journal 2, n.º 6 (17 de novembro de 2021): 230. http://dx.doi.org/10.3847/psj/ac2dfb.
Texto completo da fonteSun, Xiaomin, Chenxi Zhang, Yuyang Zhao, Jing Bai e Maoxia He. "Kinetic study on the linalool ozonolysis reaction in the atmosphere". Canadian Journal of Chemistry 90, n.º 4 (abril de 2012): 353–61. http://dx.doi.org/10.1139/v2012-001.
Texto completo da fonteHou, Pei, Shiliang Wu, Jessica L. McCarty e Yang Gao. "Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change". Atmospheric Chemistry and Physics 18, n.º 11 (13 de junho de 2018): 8173–82. http://dx.doi.org/10.5194/acp-18-8173-2018.
Texto completo da fonteKristiansen, N. I., A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias et al. "Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models". Atmospheric Chemistry and Physics 16, n.º 5 (17 de março de 2016): 3525–61. http://dx.doi.org/10.5194/acp-16-3525-2016.
Texto completo da fonteWuebbles, D. J., K. O. Patten, D. Wang, D. Youn, M. Martínez-Avilés e J. S. Francisco. "Three-dimensional model evaluation of the Ozone Depletion Potentials for n-propyl bromide, trichloroethylene and perchloroethylene". Atmospheric Chemistry and Physics 11, n.º 5 (15 de março de 2011): 2371–80. http://dx.doi.org/10.5194/acp-11-2371-2011.
Texto completo da fonteWuebbles, D. J., K. O. Patten, D. Wang, D. Youn, M. Martínez-Avilés e J. S. Francisco. "Three-dimensional model evaluation of the Ozone Depletion Potentials for n-propyl bromide, trichloroethylene and perchloroethylene". Atmospheric Chemistry and Physics Discussions 10, n.º 7 (26 de julho de 2010): 17889–910. http://dx.doi.org/10.5194/acpd-10-17889-2010.
Texto completo da fonteArcher, David, Michael Eby, Victor Brovkin, Andy Ridgwell, Long Cao, Uwe Mikolajewicz, Ken Caldeira et al. "Atmospheric Lifetime of Fossil Fuel Carbon Dioxide". Annual Review of Earth and Planetary Sciences 37, n.º 1 (maio de 2009): 117–34. http://dx.doi.org/10.1146/annurev.earth.031208.100206.
Texto completo da fonteMoore, Berrien, e B. H. Braswell. "The lifetime of excess atmospheric carbon dioxide". Global Biogeochemical Cycles 8, n.º 1 (março de 1994): 23–38. http://dx.doi.org/10.1029/93gb03392.
Texto completo da fonteArcher, David, e Victor Brovkin. "The millennial atmospheric lifetime of anthropogenic CO2". Climatic Change 90, n.º 3 (4 de junho de 2008): 283–97. http://dx.doi.org/10.1007/s10584-008-9413-1.
Texto completo da fonteKeßel, Stephan, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri et al. "Atmospheric chemistry, sources and sinks of carbon suboxide, C<sub>3</sub>O<sub>2</sub>". Atmospheric Chemistry and Physics 17, n.º 14 (20 de julho de 2017): 8789–804. http://dx.doi.org/10.5194/acp-17-8789-2017.
Texto completo da fonteBrown, A. T., C. M. Volk, M. R. Schoeberl, C. D. Boone e P. F. Bernath. "Stratospheric lifetimes of CFC-12, CCl<sub>4</sub>, CH<sub>4</sub>, CH<sub>3</sub>Cl and N<sub>2</sub>O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)". Atmospheric Chemistry and Physics 13, n.º 14 (23 de julho de 2013): 6921–50. http://dx.doi.org/10.5194/acp-13-6921-2013.
Texto completo da fonteSaiz-Lopez, Alfonso, Oleg Travnikov, Jeroen E. Sonke, Colin P. Thackray, Daniel J. Jacob, Javier Carmona-García, Antonio Francés-Monerris et al. "Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere". Proceedings of the National Academy of Sciences 117, n.º 49 (23 de novembro de 2020): 30949–56. http://dx.doi.org/10.1073/pnas.1922486117.
Texto completo da fonteDeters, B., J. P. Burrows, S. Himmelmann e C. Blindauer. "Gas phase spectra of HOBr and Br2O and their atmospheric significance". Annales Geophysicae 14, n.º 4 (30 de abril de 1996): 468–75. http://dx.doi.org/10.1007/s00585-996-0468-x.
Texto completo da fonteKovács, Tamás, Wuhu Feng, Anna Totterdill, John M. C. Plane, Sandip Dhomse, Juan Carlos Gómez-Martín, Gabriele P. Stiller et al. "Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model". Atmospheric Chemistry and Physics 17, n.º 2 (20 de janeiro de 2017): 883–98. http://dx.doi.org/10.5194/acp-17-883-2017.
Texto completo da fonteWang, Jian, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang et al. "The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas". Atmospheric Chemistry and Physics 24, n.º 15 (8 de agosto de 2024): 8721–36. http://dx.doi.org/10.5194/acp-24-8721-2024.
Texto completo da fonteYates, Jack S., Paul I. Palmer, James Manners, Ian Boutle, Krisztian Kohary, Nathan Mayne e Luke Abraham. "Ozone chemistry on tidally locked M dwarf planets". Monthly Notices of the Royal Astronomical Society 492, n.º 2 (8 de janeiro de 2020): 1691–705. http://dx.doi.org/10.1093/mnras/stz3520.
Texto completo da fonteAl-Zaidi, H. K., M. J. Al-Bermani e A. M. Taleb. "Estimating the lifetime and Reentry of the Aluminum Space Debris of Sizes (1 and 10 cm) in LEO under Atmosphere Drag Effects". Journal of Kufa-Physics 12, n.º 02 (10 de dezembro de 2020): 66–75. http://dx.doi.org/10.31257/2018/jkp/2020/120207.
Texto completo da fonteAl-Zaidi, H. K., M. J. Al-Bermani e A. M. Taleb. "Estimating the lifetime and Reentry of the Aluminum Space Debris of Sizes (1 and 10 cm) in LEO under Atmosphere Drag Effects". Journal of Kufa-Physics 12, n.º 02 (10 de dezembro de 2020): 66–75. http://dx.doi.org/10.31257/2018/jkp/2020/120207.
Texto completo da fonteStevenson, D. S., C. E. Johnson, E. J. Highwood, V. Gauci, W. J. Collins e R. G. Derwent. "Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling". Atmospheric Chemistry and Physics 3, n.º 3 (19 de maio de 2003): 487–507. http://dx.doi.org/10.5194/acp-3-487-2003.
Texto completo da fonteLiu, Y., L. Huang, S. M. Li, T. Harner e J. Liggio. "OH-initiated heterogeneous oxidation of tris-2-butoxyethyl phosphate: implications for its fate in the atmosphere". Atmospheric Chemistry and Physics 14, n.º 22 (19 de novembro de 2014): 12195–207. http://dx.doi.org/10.5194/acp-14-12195-2014.
Texto completo da fonteDalsøren, Stig B., Cathrine L. Myhre, Gunnar Myhre, Angel J. Gomez-Pelaez, Ole A. Søvde, Ivar S. A. Isaksen, Ray F. Weiss e Christina M. Harth. "Atmospheric methane evolution the last 40 years". Atmospheric Chemistry and Physics 16, n.º 5 (9 de março de 2016): 3099–126. http://dx.doi.org/10.5194/acp-16-3099-2016.
Texto completo da fonteRigby, M., R. G. Prinn, S. O'Doherty, S. A. Montzka, A. McCulloch, C. M. Harth, J. Mühle et al. "Re-evaluation of the lifetimes of the major CFCs and CH<sub>3</sub>CCl<sub>3</sub> using atmospheric trends". Atmospheric Chemistry and Physics Discussions 12, n.º 9 (18 de setembro de 2012): 24469–99. http://dx.doi.org/10.5194/acpd-12-24469-2012.
Texto completo da fontePrather, Michael J., Lucien Froidevaux e Nathaniel J. Livesey. "Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021". Atmospheric Chemistry and Physics 23, n.º 2 (18 de janeiro de 2023): 843–49. http://dx.doi.org/10.5194/acp-23-843-2023.
Texto completo da fonteYoun, D., K. O. Patten, D. J. Wuebbles, H. Lee e C. W. So. "Potential impact of iodinated replacement compounds CF<sub>3</sub>I and CH<sub>3</sub>I on atmospheric ozone: a three-dimensional modeling study". Atmospheric Chemistry and Physics 10, n.º 20 (29 de outubro de 2010): 10129–44. http://dx.doi.org/10.5194/acp-10-10129-2010.
Texto completo da fonteKristiansen, N. I., A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias et al. "Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models". Atmospheric Chemistry and Physics Discussions 15, n.º 17 (9 de setembro de 2015): 24513–85. http://dx.doi.org/10.5194/acpd-15-24513-2015.
Texto completo da fonteYanchukovsky, Valery. "MUON INTENSITY VARIATIONS AND ATMOSPHERIC TEMPERATURE". Solar-Terrestrial Physics 6, n.º 1 (1 de abril de 2020): 108–15. http://dx.doi.org/10.12737/stp-61202013.
Texto completo da fonteYanchukovsky, Valery. "MUON INTENSITY VARIATIONS AND ATMOSPHERIC TEMPERATURE". Solnechno-Zemnaya Fizika 6, n.º 1 (30 de março de 2020): 134–41. http://dx.doi.org/10.12737/szf-61202013.
Texto completo da fonteBluvshtein, Nir, Ulrich K. Krieger e Thomas Peter. "Photophoretic spectroscopy in atmospheric chemistry – high-sensitivity measurements of light absorption by a single particle". Atmospheric Measurement Techniques 13, n.º 6 (18 de junho de 2020): 3191–203. http://dx.doi.org/10.5194/amt-13-3191-2020.
Texto completo da fonte