Artigos de revistas sobre o tema "Atmospheric lifetime"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Atmospheric lifetime".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sonnemann, G. R., and M. Grygalashvyly. "Effective CO<sub>2</sub> lifetime and future CO<sub>2</sub> levels based on fit function." Annales Geophysicae 31, no. 9 (2013): 1591–96. http://dx.doi.org/10.5194/angeo-31-1591-2013.
Texto completo da fonteRoelofs, G. J. "A steady-state analysis of the temperature responses of water vapor and aerosol lifetimes." Atmospheric Chemistry and Physics 13, no. 16 (2013): 8245–54. http://dx.doi.org/10.5194/acp-13-8245-2013.
Texto completo da fonteTakahashi, K., T. Nakayama, Y. Matsumi, et al. "Atmospheric lifetime of SF5CF3." Geophysical Research Letters 29, no. 15 (2002): 7–1. http://dx.doi.org/10.1029/2002gl015356.
Texto completo da fonteHoffmann, L., C. M. Hoppe, R. Müller, et al. "Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies." Atmospheric Chemistry and Physics 14, no. 22 (2014): 12479–97. http://dx.doi.org/10.5194/acp-14-12479-2014.
Texto completo da fonteSodemann, Harald. "Beyond Turnover Time: Constraining the Lifetime Distribution of Water Vapor from Simple and Complex Approaches." Journal of the Atmospheric Sciences 77, no. 2 (2020): 413–33. http://dx.doi.org/10.1175/jas-d-18-0336.1.
Texto completo da fontePatten, K. O., and D. J. Wuebbles. "Atmospheric lifetimes and ozone depletion potentials of trans-1-chloro-3,3,3-trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model." Atmospheric Chemistry and Physics Discussions 10, no. 7 (2010): 16637–57. http://dx.doi.org/10.5194/acpd-10-16637-2010.
Texto completo da fonteRoelofs, G. J. "Aerosol lifetime and climate change." Atmospheric Chemistry and Physics Discussions 12, no. 7 (2012): 16493–514. http://dx.doi.org/10.5194/acpd-12-16493-2012.
Texto completo da fontePatten, K. O., and D. J. Wuebbles. "Atmospheric lifetimes and Ozone Depletion Potentials of trans-1-chloro-3,3,3-trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model." Atmospheric Chemistry and Physics 10, no. 22 (2010): 10867–74. http://dx.doi.org/10.5194/acp-10-10867-2010.
Texto completo da fonteBrown, A. T., C. M. Volk, M. R. Schoeberl, C. D. Boone, and P. F. Bernath. "Stratospheric lifetimes of CFC-12, CCl<sub>4</sub>, CH<sub>4</sub>, CH<sub>3</sub>Cl and N<sub>2</sub>O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)." Atmospheric Chemistry and Physics Discussions 13, no. 2 (2013): 4221–87. http://dx.doi.org/10.5194/acpd-13-4221-2013.
Texto completo da fonteKepros, John G., and Greg Davidson. "Atmospheric Heating and Hubble's Lifetime." Physics Today 47, no. 1 (1994): 68–69. http://dx.doi.org/10.1063/1.2808393.
Texto completo da fonteEllis, D. A., J. W. Martin, S. A. Mabury, M. D. Hurley, M. P. Sulbaek Andersen, and T. J. Wallington. "Atmospheric Lifetime of Fluorotelomer Alcohols." Environmental Science & Technology 37, no. 17 (2003): 3816–20. http://dx.doi.org/10.1021/es034136j.
Texto completo da fonteFischer, Gaston. "Atmospheric lifetime of carbon dioxide." Population and Environment 10, no. 3 (1989): 177–81. http://dx.doi.org/10.1007/bf01257903.
Texto completo da fonteHoffmann, L., C. M. Hoppe, R. Müller, et al. "Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies." Atmospheric Chemistry and Physics Discussions 14, no. 11 (2014): 16865–906. http://dx.doi.org/10.5194/acpd-14-16865-2014.
Texto completo da fonteWang, Peidong, Jeffery R. Scott, Susan Solomon, et al. "On the effects of the ocean on atmospheric CFC-11 lifetimes and emissions." Proceedings of the National Academy of Sciences 118, no. 12 (2021): e2021528118. http://dx.doi.org/10.1073/pnas.2021528118.
Texto completo da fonteWilliams, Jonathan, and Akima Ringsdorf. "Human odour thresholds are tuned to atmospheric chemical lifetimes." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1800 (2020): 20190274. http://dx.doi.org/10.1098/rstb.2019.0274.
Texto completo da fonteRigby, M., R. G. Prinn, S. O'Doherty, et al. "Re-evaluation of the lifetimes of the major CFCs and CH<sub>3</sub>CCl<sub>3</sub> using atmospheric trends." Atmospheric Chemistry and Physics 13, no. 5 (2013): 2691–702. http://dx.doi.org/10.5194/acp-13-2691-2013.
Texto completo da fonteKopylov, S. N., P. S. Kopylov, I. P. Eltyshev, and I. R. Begishev. "Characteristics of Impact on the Atmosphere of Perfluorisohexenes - Promising Components of Gas Extinguishing Compositions." Journal of Physics: Conference Series 2389, no. 1 (2022): 012003. http://dx.doi.org/10.1088/1742-6596/2389/1/012003.
Texto completo da fonteMiller-Ricci, Eliza, Sara Seager, and Dimitar Sasselov. "The Atmospheres of Extrasolar Super-Earths." Proceedings of the International Astronomical Union 4, S253 (2008): 263–71. http://dx.doi.org/10.1017/s1743921308026483.
Texto completo da fonteLarin, I. K. "Odd oxygen and its atmospheric lifetime." Russian Journal of Physical Chemistry B 11, no. 2 (2017): 375–79. http://dx.doi.org/10.1134/s1990793117020075.
Texto completo da fonteCape, J. N., M. Coyle, and P. Dumitrean. "The atmospheric lifetime of black carbon." Atmospheric Environment 59 (November 2012): 256–63. http://dx.doi.org/10.1016/j.atmosenv.2012.05.030.
Texto completo da fonteKennett, E. J., and R. Toumi. "Temperature dependence of atmospheric moisture lifetime." Geophysical Research Letters 32, no. 19 (2005): n/a. http://dx.doi.org/10.1029/2005gl023936.
Texto completo da fonteJäggi, Noah, Diana Gamborino, Dan J. Bower, et al. "Evolution of Mercury’s Earliest Atmosphere." Planetary Science Journal 2, no. 6 (2021): 230. http://dx.doi.org/10.3847/psj/ac2dfb.
Texto completo da fonteHou, Pei, Shiliang Wu, Jessica L. McCarty, and Yang Gao. "Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change." Atmospheric Chemistry and Physics 18, no. 11 (2018): 8173–82. http://dx.doi.org/10.5194/acp-18-8173-2018.
Texto completo da fonteSun, Xiaomin, Chenxi Zhang, Yuyang Zhao, Jing Bai, and Maoxia He. "Kinetic study on the linalool ozonolysis reaction in the atmosphere." Canadian Journal of Chemistry 90, no. 4 (2012): 353–61. http://dx.doi.org/10.1139/v2012-001.
Texto completo da fonteCroft, B., J. R. Pierce, and R. V. Martin. "Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements." Atmospheric Chemistry and Physics 14, no. 8 (2014): 4313–25. http://dx.doi.org/10.5194/acp-14-4313-2014.
Texto completo da fonteWuebbles, D. J., K. O. Patten, D. Wang, D. Youn, M. Martínez-Avilés, and J. S. Francisco. "Three-dimensional model evaluation of the Ozone Depletion Potentials for n-propyl bromide, trichloroethylene and perchloroethylene." Atmospheric Chemistry and Physics 11, no. 5 (2011): 2371–80. http://dx.doi.org/10.5194/acp-11-2371-2011.
Texto completo da fonteWuebbles, D. J., K. O. Patten, D. Wang, D. Youn, M. Martínez-Avilés, and J. S. Francisco. "Three-dimensional model evaluation of the Ozone Depletion Potentials for n-propyl bromide, trichloroethylene and perchloroethylene." Atmospheric Chemistry and Physics Discussions 10, no. 7 (2010): 17889–910. http://dx.doi.org/10.5194/acpd-10-17889-2010.
Texto completo da fonteKristiansen, N. I., A. Stohl, D. J. L. Olivié, et al. "Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models." Atmospheric Chemistry and Physics 16, no. 5 (2016): 3525–61. http://dx.doi.org/10.5194/acp-16-3525-2016.
Texto completo da fonteSaiz-Lopez, Alfonso, Oleg Travnikov, Jeroen E. Sonke, et al. "Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere." Proceedings of the National Academy of Sciences 117, no. 49 (2020): 30949–56. http://dx.doi.org/10.1073/pnas.1922486117.
Texto completo da fonteBrown, A. T., C. M. Volk, M. R. Schoeberl, C. D. Boone, and P. F. Bernath. "Stratospheric lifetimes of CFC-12, CCl<sub>4</sub>, CH<sub>4</sub>, CH<sub>3</sub>Cl and N<sub>2</sub>O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)." Atmospheric Chemistry and Physics 13, no. 14 (2013): 6921–50. http://dx.doi.org/10.5194/acp-13-6921-2013.
Texto completo da fonteKeßel, Stephan, David Cabrera-Perez, Abraham Horowitz, et al. "Atmospheric chemistry, sources and sinks of carbon suboxide, C<sub>3</sub>O<sub>2</sub>." Atmospheric Chemistry and Physics 17, no. 14 (2017): 8789–804. http://dx.doi.org/10.5194/acp-17-8789-2017.
Texto completo da fonteArcher, David, Michael Eby, Victor Brovkin, et al. "Atmospheric Lifetime of Fossil Fuel Carbon Dioxide." Annual Review of Earth and Planetary Sciences 37, no. 1 (2009): 117–34. http://dx.doi.org/10.1146/annurev.earth.031208.100206.
Texto completo da fonteMoore, Berrien, and B. H. Braswell. "The lifetime of excess atmospheric carbon dioxide." Global Biogeochemical Cycles 8, no. 1 (1994): 23–38. http://dx.doi.org/10.1029/93gb03392.
Texto completo da fonteArcher, David, and Victor Brovkin. "The millennial atmospheric lifetime of anthropogenic CO2." Climatic Change 90, no. 3 (2008): 283–97. http://dx.doi.org/10.1007/s10584-008-9413-1.
Texto completo da fonteWang, Jian, Lei Xue, Qianyao Ma, et al. "The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas." Atmospheric Chemistry and Physics 24, no. 15 (2024): 8721–36. http://dx.doi.org/10.5194/acp-24-8721-2024.
Texto completo da fonteYates, Jack S., Paul I. Palmer, James Manners, et al. "Ozone chemistry on tidally locked M dwarf planets." Monthly Notices of the Royal Astronomical Society 492, no. 2 (2020): 1691–705. http://dx.doi.org/10.1093/mnras/stz3520.
Texto completo da fonteDeters, B., J. P. Burrows, S. Himmelmann, and C. Blindauer. "Gas phase spectra of HOBr and Br2O and their atmospheric significance." Annales Geophysicae 14, no. 4 (1996): 468–75. http://dx.doi.org/10.1007/s00585-996-0468-x.
Texto completo da fonteKovács, Tamás, Wuhu Feng, Anna Totterdill, et al. "Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model." Atmospheric Chemistry and Physics 17, no. 2 (2017): 883–98. http://dx.doi.org/10.5194/acp-17-883-2017.
Texto completo da fonteAl-Zaidi, H. K., M. J. Al-Bermani, and A. M. Taleb. "Estimating the lifetime and Reentry of the Aluminum Space Debris of Sizes (1 and 10 cm) in LEO under Atmosphere Drag Effects." Journal of Kufa-Physics 12, no. 02 (2020): 66–75. http://dx.doi.org/10.31257/2018/jkp/2020/120207.
Texto completo da fonteAl-Zaidi, H. K., M. J. Al-Bermani, and A. M. Taleb. "Estimating the lifetime and Reentry of the Aluminum Space Debris of Sizes (1 and 10 cm) in LEO under Atmosphere Drag Effects." Journal of Kufa-Physics 12, no. 02 (2020): 66–75. http://dx.doi.org/10.31257/2018/jkp/2020/120207.
Texto completo da fonteRigby, M., R. G. Prinn, S. O'Doherty, et al. "Re-evaluation of the lifetimes of the major CFCs and CH<sub>3</sub>CCl<sub>3</sub> using atmospheric trends." Atmospheric Chemistry and Physics Discussions 12, no. 9 (2012): 24469–99. http://dx.doi.org/10.5194/acpd-12-24469-2012.
Texto completo da fonteStevenson, D. S., C. E. Johnson, E. J. Highwood, V. Gauci, W. J. Collins, and R. G. Derwent. "Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling." Atmospheric Chemistry and Physics 3, no. 3 (2003): 487–507. http://dx.doi.org/10.5194/acp-3-487-2003.
Texto completo da fonteDalsøren, Stig B., Cathrine L. Myhre, Gunnar Myhre, et al. "Atmospheric methane evolution the last 40 years." Atmospheric Chemistry and Physics 16, no. 5 (2016): 3099–126. http://dx.doi.org/10.5194/acp-16-3099-2016.
Texto completo da fonteLiu, Y., L. Huang, S. M. Li, T. Harner, and J. Liggio. "OH-initiated heterogeneous oxidation of tris-2-butoxyethyl phosphate: implications for its fate in the atmosphere." Atmospheric Chemistry and Physics 14, no. 22 (2014): 12195–207. http://dx.doi.org/10.5194/acp-14-12195-2014.
Texto completo da fontePrather, Michael J., Lucien Froidevaux, and Nathaniel J. Livesey. "Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021." Atmospheric Chemistry and Physics 23, no. 2 (2023): 843–49. http://dx.doi.org/10.5194/acp-23-843-2023.
Texto completo da fonteKristiansen, N. I., A. Stohl, D. J. L. Olivié, et al. "Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models." Atmospheric Chemistry and Physics Discussions 15, no. 17 (2015): 24513–85. http://dx.doi.org/10.5194/acpd-15-24513-2015.
Texto completo da fonteYanchukovsky, Valery. "MUON INTENSITY VARIATIONS AND ATMOSPHERIC TEMPERATURE." Solar-Terrestrial Physics 6, no. 1 (2020): 108–15. http://dx.doi.org/10.12737/stp-61202013.
Texto completo da fonteYanchukovsky, Valery. "MUON INTENSITY VARIATIONS AND ATMOSPHERIC TEMPERATURE." Solnechno-Zemnaya Fizika 6, no. 1 (2020): 134–41. http://dx.doi.org/10.12737/szf-61202013.
Texto completo da fonteYoun, D., K. O. Patten, D. J. Wuebbles, H. Lee, and C. W. So. "Potential impact of iodinated replacement compounds CF<sub>3</sub>I and CH<sub>3</sub>I on atmospheric ozone: a three-dimensional modeling study." Atmospheric Chemistry and Physics 10, no. 20 (2010): 10129–44. http://dx.doi.org/10.5194/acp-10-10129-2010.
Texto completo da fonteBluvshtein, Nir, Ulrich K. Krieger, and Thomas Peter. "Photophoretic spectroscopy in atmospheric chemistry – high-sensitivity measurements of light absorption by a single particle." Atmospheric Measurement Techniques 13, no. 6 (2020): 3191–203. http://dx.doi.org/10.5194/amt-13-3191-2020.
Texto completo da fonte