Artigos de revistas sobre o tema "ATF6α"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "ATF6α".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Amyot, Julie, Isma Benterki, Ghislaine Fontés, Derek K. Hagman, Mourad Ferdaoussi, Tracy Teodoro, Allen Volchuk, Érik Joly e Vincent Poitout. "Binding of activating transcription factor 6 to the A5/Core of the rat insulin II gene promoter does not mediate its transcriptional repression". Journal of Molecular Endocrinology 47, n.º 3 (5 de agosto de 2011): 273–83. http://dx.doi.org/10.1530/jme-11-0016.
Texto completo da fonteYoshida, Hiderou, Tetsuya Okada, Kyosuke Haze, Hideki Yanagi, Takashi Yura, Manabu Negishi e Kazutoshi Mori. "Endoplasmic Reticulum Stress-Induced Formation of Transcription Factor Complex ERSF Including NF-Y (CBF) and Activating Transcription Factors 6α and 6β That Activates the Mammalian Unfolded Protein Response". Molecular and Cellular Biology 21, n.º 4 (15 de fevereiro de 2001): 1239–48. http://dx.doi.org/10.1128/mcb.21.4.1239-1248.2001.
Texto completo da fonteLee, Ann-Hwee, Neal N. Iwakoshi e Laurie H. Glimcher. "XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response". Molecular and Cellular Biology 23, n.º 21 (1 de novembro de 2003): 7448–59. http://dx.doi.org/10.1128/mcb.23.21.7448-7459.2003.
Texto completo da fonteIshikawa, Tokiro, Tetsuya Okada, Tomoko Ishikawa-Fujiwara, Takeshi Todo, Yasuhiro Kamei, Shuji Shigenobu, Minoru Tanaka et al. "ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish". Molecular Biology of the Cell 24, n.º 9 (maio de 2013): 1387–95. http://dx.doi.org/10.1091/mbc.e12-11-0830.
Texto completo da fonteSharma, Rohit B., Christine Darko e Laura C. Alonso. "Intersection of the ATF6 and XBP1 ER stress pathways in mouse islet cells". Journal of Biological Chemistry 295, n.º 41 (11 de agosto de 2020): 14164–77. http://dx.doi.org/10.1074/jbc.ra120.014173.
Texto completo da fonteTeodoro, Tracy, Tanya Odisho, Elena Sidorova e Allen Volchuk. "Pancreatic β-cells depend on basal expression of active ATF6α-p50 for cell survival even under nonstress conditions". American Journal of Physiology-Cell Physiology 302, n.º 7 (1 de abril de 2012): C992—C1003. http://dx.doi.org/10.1152/ajpcell.00160.2011.
Texto completo da fonteXue, Fei, Jianwen Lu, Samuel C. Buchl, Liankang Sun, Vijay H. Shah, Harmeet Malhi e Jessica L. Maiers. "Coordinated signaling of activating transcription factor 6α and inositol-requiring enzyme 1α regulates hepatic stellate cell-mediated fibrogenesis in mice". American Journal of Physiology-Gastrointestinal and Liver Physiology 320, n.º 5 (1 de maio de 2021): G864—G879. http://dx.doi.org/10.1152/ajpgi.00453.2020.
Texto completo da fonteStauffer, Winston T., Adrian Arrieta, Erik A. Blackwood e Christopher C. Glembotski. "Sledgehammer to Scalpel: Broad Challenges to the Heart and Other Tissues Yield Specific Cellular Responses via Transcriptional Regulation of the ER-Stress Master Regulator ATF6α". International Journal of Molecular Sciences 21, n.º 3 (8 de fevereiro de 2020): 1134. http://dx.doi.org/10.3390/ijms21031134.
Texto completo da fonteAzuma, Yoshinori, Daisuke Hagiwara, Wenjun Lu, Yoshiaki Morishita, Hidetaka Suga, Motomitsu Goto, Ryoichi Banno et al. "Activating Transcription Factor 6α Is Required for the Vasopressin Neuron System to Maintain Water Balance Under Dehydration in Male Mice". Endocrinology 155, n.º 12 (1 de dezembro de 2014): 4905–14. http://dx.doi.org/10.1210/en.2014-1522.
Texto completo da fontePagliara, Valentina, Giuseppina Amodio, Vincenzo Vestuto, Silvia Franceschelli, Nicola Antonino Russo, Vittorio Cirillo, Giovanna Mottola, Paolo Remondelli e Ornella Moltedo. "Myogenesis in C2C12 Cells Requires Phosphorylation of ATF6α by p38 MAPK". Biomedicines 11, n.º 5 (16 de maio de 2023): 1457. http://dx.doi.org/10.3390/biomedicines11051457.
Texto completo da fonteHAZE, Kyosuke, Tetsuya OKADA, Hiderou YOSHIDA, Hideki YANAGI, Takashi YURA, Manabu NEGISHI e Kazutoshi MORI. "Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response". Biochemical Journal 355, n.º 1 (26 de fevereiro de 2001): 19–28. http://dx.doi.org/10.1042/bj3550019.
Texto completo da fonteEkong, Udeme D., Jie Yao, James Knight, Sameet Mehta, Yaron Avitzur, Mercedes Martinez, Steve J. Lobritto e Andrew Mason. "HERV1-env dependent unfolded protein response activation is a potential initiator of autoreactivity in autoimmune liver disease". Journal of Immunology 204, n.º 1_Supplement (1 de maio de 2020): 224.7. http://dx.doi.org/10.4049/jimmunol.204.supp.224.7.
Texto completo da fonteThuerauf, Donna J., Lisa Morrison e Christopher C. Glembotski. "Opposing Roles for ATF6α and ATF6β in Endoplasmic Reticulum Stress Response Gene Induction". Journal of Biological Chemistry 279, n.º 20 (18 de fevereiro de 2004): 21078–84. http://dx.doi.org/10.1074/jbc.m400713200.
Texto completo da fonteHe, Yanfeng, Shigeo Sato, Chieri Tomomori-Sato, Shiyuan Chen, Zach H. Goode, Joan W. Conaway e Ronald C. Conaway. "Elongin functions as a loading factor for Mediator at ATF6α-regulated ER stress response genes". Proceedings of the National Academy of Sciences 118, n.º 39 (20 de setembro de 2021): e2108751118. http://dx.doi.org/10.1073/pnas.2108751118.
Texto completo da fonteYamamoto, Keisuke, Kazuna Takahara, Seiichi Oyadomari, Tetsuya Okada, Takashi Sato, Akihiro Harada e Kazutoshi Mori. "Induction of Liver Steatosis and Lipid Droplet Formation in ATF6α-Knockout Mice Burdened with Pharmacological Endoplasmic Reticulum Stress". Molecular Biology of the Cell 21, n.º 17 (setembro de 2010): 2975–86. http://dx.doi.org/10.1091/mbc.e09-02-0133.
Texto completo da fonteKim, Ju Won, So-Hyun Bae, Yesol Moon, Eun Kyung Kim, Yongjin Kim, Yun Gyu Park, Mi-Ryung Han e Jeongwon Sohn. "Transcriptomic analysis of cellular senescence induced by ectopic expression of ATF6α in human breast cancer cells". PLOS ONE 19, n.º 10 (28 de outubro de 2024): e0309749. http://dx.doi.org/10.1371/journal.pone.0309749.
Texto completo da fonteForouhan, M., K. Mori e R. P. Boot-Handford. "Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X". Matrix Biology 70 (setembro de 2018): 50–71. http://dx.doi.org/10.1016/j.matbio.2018.03.004.
Texto completo da fonteGuan, Dongyin, Hao Wang, Veronica E. Li, Yingying Xu, Min Yang e Zonghou Shen. "N-glycosylation of ATF6β is essential for its proteolytic cleavage and transcriptional repressor function to ATF6α". Journal of Cellular Biochemistry 108, n.º 4 (1 de novembro de 2009): 825–31. http://dx.doi.org/10.1002/jcb.22310.
Texto completo da fonteNinagawa, Satoshi, Tetsuya Okada, Yoshiki Sumitomo, Satoshi Horimoto, Takehiro Sugimoto, Tokiro Ishikawa, Shunichi Takeda et al. "Forcible destruction of severely misfolded mammalian glycoproteins by the non-glycoprotein ERAD pathway". Journal of Cell Biology 211, n.º 4 (16 de novembro de 2015): 775–84. http://dx.doi.org/10.1083/jcb.201504109.
Texto completo da fonteSundaram, Arunkumar, Suhila Appathurai, Rachel Plumb e Malaiyalam Mariappan. "Dynamic changes in complexes of IRE1α, PERK, and ATF6α during endoplasmic reticulum stress". Molecular Biology of the Cell 29, n.º 11 (junho de 2018): 1376–88. http://dx.doi.org/10.1091/mbc.e17-10-0594.
Texto completo da fonteBobrovnikova-Marjon, Ekaterina, e J. Alan Diehl. "Coping with Stress: ATF6α Takes the Stage". Developmental Cell 13, n.º 3 (setembro de 2007): 322–24. http://dx.doi.org/10.1016/j.devcel.2007.08.006.
Texto completo da fonteLiu, Pingting, Md Razaul Karim, Ana Covelo, Yuan Yue, Michael K. Lee e Wensheng Lin. "The UPR Maintains Proteostasis and the Viability and Function of Hippocampal Neurons in Adult Mice". International Journal of Molecular Sciences 24, n.º 14 (16 de julho de 2023): 11542. http://dx.doi.org/10.3390/ijms241411542.
Texto completo da fonteMARUYAMA, Ryuto, Yuki KAMOSHIDA, Makoto SHIMIZU, Jun INOUE e Ryuichiro SATO. "ATF6α Stimulates Cholesterogenic Gene Expression andde NovoCholesterol Synthesis". Bioscience, Biotechnology, and Biochemistry 77, n.º 8 (23 de agosto de 2013): 1734–38. http://dx.doi.org/10.1271/bbb.130295.
Texto completo da fonteArai, Masaaki, Nobuo Kondoh, Nobuo Imazeki, Akiyuki Hada, Kazuo Hatsuse, Fumihiro Kimura, Osamu Matsubara, Kazutoshi Mori, Toru Wakatsuki e Mikio Yamamoto. "Transformation-associated gene regulation by ATF6α during hepatocarcinogenesis". FEBS Letters 580, n.º 1 (9 de dezembro de 2005): 184–90. http://dx.doi.org/10.1016/j.febslet.2005.11.072.
Texto completo da fonteWalter, Franziska, Aisling O'Brien, Caoimhín G. Concannon, Heiko Düssmann e Jochen H. M. Prehn. "ER stress signaling has an activating transcription factor 6α (ATF6)-dependent “off-switch”". Journal of Biological Chemistry 293, n.º 47 (4 de outubro de 2018): 18270–84. http://dx.doi.org/10.1074/jbc.ra118.002121.
Texto completo da fonteJao, Tzu-Ming, Masaomi Nangaku, Chia-Hsien Wu, Mai Sugahara, Hisako Saito, Hiroshi Maekawa, Yu Ishimoto et al. "ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis". Kidney International 95, n.º 3 (março de 2019): 577–89. http://dx.doi.org/10.1016/j.kint.2018.09.023.
Texto completo da fontePapp, Sylvia, Xiaochu Zhang, Eva Szabo, Marek Michalak e Michal Opas. "Expression of Endoplasmic Reticulum Chaperones in Cardiac Development". Open Cardiovascular Medicine Journal 2, n.º 1 (21 de maio de 2008): 31–35. http://dx.doi.org/10.2174/1874192400802010031.
Texto completo da fonteGjymishka, Altin, Nan Su e Michael S. Kilberg. "Transcriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway". Biochemical Journal 417, n.º 3 (16 de janeiro de 2009): 695–703. http://dx.doi.org/10.1042/bj20081706.
Texto completo da fonteJin, Byungseok, Tokiro Ishikawa, Makoto Kashima, Rei Komura, Hiromi Hirata, Tetsuya Okada e Kazutoshi Mori. "Activation of XBP1 but not ATF6α rescues heart failure induced by persistent ER stress in medaka fish". Life Science Alliance 6, n.º 7 (9 de maio de 2023): e202201771. http://dx.doi.org/10.26508/lsa.202201771.
Texto completo da fonteThuerauf, Donna J., Marie Marcinko, Peter J. Belmont e Christopher C. Glembotski. "Effects of the Isoform-specific Characteristics of ATF6α and ATF6β on Endoplasmic Reticulum Stress Response Gene Expression and Cell Viability". Journal of Biological Chemistry 282, n.º 31 (23 de maio de 2007): 22865–78. http://dx.doi.org/10.1074/jbc.m701213200.
Texto completo da fonteDruelle, Clémentine, Claire Drullion, Julie Deslé, Nathalie Martin, Laure Saas, Johanna Cormenier, Nicolas Malaquin et al. "ATF6α regulates morphological changes associated with senescence in human fibroblasts". Oncotarget 7, n.º 42 (22 de agosto de 2016): 67699–715. http://dx.doi.org/10.18632/oncotarget.11505.
Texto completo da fonteKezuka, Dai, Mika Tkarada-Iemata, Tsuyoshi Hattori, Kazutoshi Mori, Ryosuke Takahashi, Yasuko Kitao e Osamu Hori. "Deletion of Atf6α enhances kainate-induced neuronal death in mice". Neurochemistry International 92 (janeiro de 2016): 67–74. http://dx.doi.org/10.1016/j.neuint.2015.12.009.
Texto completo da fonteSharma, Rohit B., Jarin T. Snyder e Laura C. Alonso. "Atf6α impacts cell number by influencing survival, death and proliferation". Molecular Metabolism 27 (setembro de 2019): S69—S80. http://dx.doi.org/10.1016/j.molmet.2019.06.005.
Texto completo da fonteXue, Fei, Harmeet Malhi, Vijay Shah e Jessica L. Maiers. "Su1691 ATF6α SIGNALING IS CRUCIAL FOR HSC ACTIVATION AND FIBROGENESIS". Gastroenterology 158, n.º 6 (maio de 2020): S—1383—S—1384. http://dx.doi.org/10.1016/s0016-5085(20)34126-3.
Texto completo da fonteKim, Hee Suk, Yongjin Kim, Min Jae Lim, Yun-Gyu Park, Serk In Park e Jeongwon Sohn. "The p38‐activated ER stress‐ATF6α axis mediates cellular senescence". FASEB Journal 33, n.º 2 (27 de setembro de 2018): 2422–34. http://dx.doi.org/10.1096/fj.201800836r.
Texto completo da fonteBaumeister, Peter, Shengzhan Luo, William C. Skarnes, Guangchao Sui, Edward Seto, Yang Shi e Amy S. Lee. "Endoplasmic Reticulum Stress Induction of the Grp78/BiP Promoter: Activating Mechanisms Mediated by YY1 and Its Interactive Chromatin Modifiers". Molecular and Cellular Biology 25, n.º 11 (1 de junho de 2005): 4529–40. http://dx.doi.org/10.1128/mcb.25.11.4529-4540.2005.
Texto completo da fontePotes, Yaiza, Beatriz De Luxán-Delgado, Adrian Rubio-González, Russel J. Reiter e Ana Maria Coto Montes. "Dose-dependent beneficial effect of melatonin on obesity; interaction of melatonin and leptin". Melatonin Research 2, n.º 1 (28 de fevereiro de 2019): 1–8. http://dx.doi.org/10.32794/mr11250008.
Texto completo da fonteAkai, Ryoko, Hisayo Hamashima, Michiko Saito, Kenji Kohno e Takao Iwawaki. "Partial limitation of cellular functions and compensatory modulation of unfolded protein response pathways caused by double-knockout of ATF6α and ATF6β". Cell Stress and Chaperones 29, n.º 1 (fevereiro de 2024): 34–48. http://dx.doi.org/10.1016/j.cstres.2023.11.002.
Texto completo da fonteMeco, Giuseppe. "The role of ATF6α in protecting dopaminergic neurons form MPTP toxicity". Movement Disorders 26, n.º 3 (15 de fevereiro de 2011): 378. http://dx.doi.org/10.1002/mds.23636.
Texto completo da fontePeng, Chiung-Chi, Chang-Rong Chen, Chang-Yu Chen, Yen-Chung Lin, Kuan-Chou Chen e Robert Y. Peng. "Nifedipine Upregulates ATF6-α, Caspases -12, -3, and -7 Implicating Lipotoxicity-Associated Renal ER Stress". International Journal of Molecular Sciences 21, n.º 9 (29 de abril de 2020): 3147. http://dx.doi.org/10.3390/ijms21093147.
Texto completo da fonteEgawa, Naohiro, Keisuke Yamamoto, Haruhisa Inoue, Rie Hikawa, Katsunori Nishi, Kazutoshi Mori e Ryosuke Takahashi. "The Endoplasmic Reticulum Stress Sensor, ATF6α, Protects against Neurotoxin-induced Dopaminergic Neuronal Death". Journal of Biological Chemistry 286, n.º 10 (3 de dezembro de 2010): 7947–57. http://dx.doi.org/10.1074/jbc.m110.156430.
Texto completo da fonteLu, Wenjun, Daisuke Hagiwara, Yoshiaki Morishita, Masayoshi Tochiya, Yoshinori Azuma, Hidetaka Suga, Motomitsu Goto et al. "Unfolded protein response in hypothalamic cultures of wild-type and ATF6α-knockout mice". Neuroscience Letters 612 (janeiro de 2016): 199–203. http://dx.doi.org/10.1016/j.neulet.2015.12.031.
Texto completo da fonteEgawa, Naohiro, Keisuke Yamamoto, Haruhisa Inoue, Katsunori Nishi, Kazutoshi Mori e Ryosuke Takahashi. "The role of ER stress sensor ATF6α in the pathogenesis of Parkinson's disease". Neuroscience Research 65 (janeiro de 2009): S118. http://dx.doi.org/10.1016/j.neures.2009.09.554.
Texto completo da fonteSoczewski, E., S. Gori, D. Paparini, E. Grasso, L. Fernández, L. Gallino, A. Schafir et al. "VIP conditions human endometrial receptivity by privileging endoplasmic reticulum stress through ATF6α pathway". Molecular and Cellular Endocrinology 516 (outubro de 2020): 110948. http://dx.doi.org/10.1016/j.mce.2020.110948.
Texto completo da fonteUnno, Hirotoshi, Marina Miller, Peter Rosenthal, Andrew Beppu, Sudipta Das e David H. Broide. "Activating transcription factor 6α (ATF6α) regulates airway hyperreactivity, smooth muscle proliferation, and contractility". Journal of Allergy and Clinical Immunology 141, n.º 1 (janeiro de 2018): 439–42. http://dx.doi.org/10.1016/j.jaci.2017.07.053.
Texto completo da fonteWu, Jun, D. Thomas Rutkowski, Meghan Dubois, Jayanth Swathirajan, Thomas Saunders, Junying Wang, Benbo Song, Grace D. Y. Yau e Randal J. Kaufman. "ATF6α Optimizes Long-Term Endoplasmic Reticulum Function to Protect Cells from Chronic Stress". Developmental Cell 13, n.º 3 (setembro de 2007): 351–64. http://dx.doi.org/10.1016/j.devcel.2007.07.005.
Texto completo da fonteLowe, C. E., R. J. Dennis, U. Obi, S. O'Rahilly e J. J. Rochford. "Investigating the involvement of the ATF6α pathway of the unfolded protein response in adipogenesis". International Journal of Obesity 36, n.º 9 (29 de novembro de 2011): 1248–51. http://dx.doi.org/10.1038/ijo.2011.233.
Texto completo da fonteFernandez-Fernandez, Maria Rosario, Isidro Ferrer e Jose J. Lucas. "Impaired ATF6α processing, decreased Rheb and neuronal cell cycle re-entry in Huntington's disease". Neurobiology of Disease 41, n.º 1 (janeiro de 2011): 23–32. http://dx.doi.org/10.1016/j.nbd.2010.08.014.
Texto completo da fonteYarapureddy, Suma, Jazmine Abril, Janet Foote, Saravana Kumar, Omar Asad, Veena Sharath, Janine Faraj et al. "ATF6α Activation Enhances Survival against Chemotherapy and Serves as a Prognostic Indicator in Osteosarcoma". Neoplasia 21, n.º 6 (junho de 2019): 516–32. http://dx.doi.org/10.1016/j.neo.2019.02.004.
Texto completo da fonteWan, Yan-Jun, Yan-Hang Wang, Qiang Guo, Yong Jiang, Peng-Fei Tu e Ke-Wu Zeng. "Protocatechualdehyde protects oxygen-glucose deprivation/reoxygenation-induced myocardial injury via inhibiting PERK/ATF6α/IRE1α pathway". European Journal of Pharmacology 891 (janeiro de 2021): 173723. http://dx.doi.org/10.1016/j.ejphar.2020.173723.
Texto completo da fonte