Artigos de revistas sobre o tema "Asymmetric photocatalysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Asymmetric photocatalysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kang, Xing, Xiaowei Wu, Xing Han, Chen Yuan, Yan Liu e Yong Cui. "Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis". Chemical Science 11, n.º 6 (2020): 1494–502. http://dx.doi.org/10.1039/c9sc04882k.
Texto completo da fonteCao, Nan, Meilan Xi, Xiaoli Li, Jinfang Zheng, Limei Qian, Yitao Dai, Xizhong Song e Shengliang Hu. "Recent Developments in Heterogeneous Photocatalysts with Near-Infrared Response". Symmetry 14, n.º 10 (11 de outubro de 2022): 2107. http://dx.doi.org/10.3390/sym14102107.
Texto completo da fonteLiu, Peng, Weijun Dai, Xianfu Shen, Xiang Shen, Yuxiang Zhao e Jian-Jun Liu. "Recent Advances in the Utilization of Chiral Covalent Organic Frameworks for Asymmetric Photocatalysis". Molecules 29, n.º 21 (23 de outubro de 2024): 5006. http://dx.doi.org/10.3390/molecules29215006.
Texto completo da fonteGao, Zhongwei, Changqing Pan, Chang-Ho Choi e Chih-Hung Chang. "Continuous-Flow Photocatalytic Microfluidic-Reactor for the Treatment of Aqueous Contaminants, Simplicity, and Complexity: A Mini-Review". Symmetry 13, n.º 8 (23 de julho de 2021): 1325. http://dx.doi.org/10.3390/sym13081325.
Texto completo da fonteChapman, Steven J., Wesley B. Swords, Christine M. Le, Ilia A. Guzei, F. Dean Toste e Tehshik P. Yoon. "Cooperative Stereoinduction in Asymmetric Photocatalysis". Journal of the American Chemical Society 144, n.º 9 (22 de fevereiro de 2022): 4206–13. http://dx.doi.org/10.1021/jacs.2c00063.
Texto completo da fonteLiu, Yang, Jiangtao Li, Xinyi Ye, Xiaowei Zhao e Zhiyong Jiang. "Organocatalytic asymmetric formal arylation of benzofuran-2(3H)-ones with cooperative visible light photocatalysis". Chemical Communications 52, n.º 97 (2016): 13955–58. http://dx.doi.org/10.1039/c6cc07105h.
Texto completo da fonteHong, Bor-Cherng. "Enantioselective synthesis enabled by visible light photocatalysis". Organic & Biomolecular Chemistry 18, n.º 23 (2020): 4298–353. http://dx.doi.org/10.1039/d0ob00759e.
Texto completo da fonteWang, Chengfeng, e Zhan Lu. "Catalytic enantioselective organic transformations via visible light photocatalysis". Organic Chemistry Frontiers 2, n.º 2 (2015): 179–90. http://dx.doi.org/10.1039/c4qo00306c.
Texto completo da fonteJiang, Chunhui, Wei Chen, Wen-Hua Zheng e Hongfei Lu. "Advances in asymmetric visible-light photocatalysis, 2015–2019". Organic & Biomolecular Chemistry 17, n.º 38 (2019): 8673–89. http://dx.doi.org/10.1039/c9ob01609k.
Texto completo da fonteLong, Chao-Jiu, Yan-Hong He e Zhi Guan. "Asymmetric oxidative Mannich reactions promoted by photocatalysis and electrochemistry". Organic & Biomolecular Chemistry 20, n.º 13 (2022): 2544–61. http://dx.doi.org/10.1039/d2ob00054g.
Texto completo da fonteJagadeeswararao, Metikoti, Raquel E. Galian e Julia Pérez-Prieto. "Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations". Nanomaterials 14, n.º 1 (28 de dezembro de 2023): 94. http://dx.doi.org/10.3390/nano14010094.
Texto completo da fonteHuang, Xiaoqiang, e Eric Meggers. "Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes". Accounts of Chemical Research 52, n.º 3 (6 de março de 2019): 833–47. http://dx.doi.org/10.1021/acs.accounts.9b00028.
Texto completo da fonteRigotti, Thomas, e José Alemán. "Visible light photocatalysis – from racemic to asymmetric activation strategies". Chemical Communications 56, n.º 76 (2020): 11169–90. http://dx.doi.org/10.1039/d0cc03738a.
Texto completo da fonteGarrido-Castro, Alberto F., M. Carmen Maestro e José Alemán. "α-Functionalization of Imines via Visible Light Photoredox Catalysis". Catalysts 10, n.º 5 (19 de maio de 2020): 562. http://dx.doi.org/10.3390/catal10050562.
Texto completo da fonteYu, Cai-Xia, Yan-Ping Gao, Xiao-Qing Cui, Meng-Jiao Guo e Lei-Lei Liu. "The crystal structure and photocatalytic properties of a three-dimensional cadmium(II) metal–organic framework: poly[bis(μ3-benzene-1,2-dicarboxylato)[μ2-1,4-bis(pyridin-3-ylmethoxy)benzene]dicadmium(II)]". Acta Crystallographica Section C Structural Chemistry 72, n.º 3 (6 de fevereiro de 2016): 174–78. http://dx.doi.org/10.1107/s2053229616001522.
Texto completo da fonteZhou, Kexu, Ying Yu, Yu-Mei Lin, Yanjun Li e Lei Gong. "Copper-catalyzed aerobic asymmetric cross-dehydrogenative coupling of C(sp3)–H bonds driven by visible light". Green Chemistry 22, n.º 14 (2020): 4597–603. http://dx.doi.org/10.1039/d0gc00262c.
Texto completo da fonteLitman, Zachary C., Yajie Wang, Huimin Zhao e John F. Hartwig. "Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis". Nature 560, n.º 7718 (agosto de 2018): 355–59. http://dx.doi.org/10.1038/s41586-018-0413-7.
Texto completo da fonteCasado-Sánchez, Antonio, Pablo Domingo-Legarda, Silvia Cabrera e José Alemán. "Visible light photocatalytic asymmetric synthesis of pyrrolo[1,2-a]indoles via intermolecular [3+2] cycloaddition". Chemical Communications 55, n.º 75 (2019): 11303–6. http://dx.doi.org/10.1039/c9cc05838a.
Texto completo da fonteLi, Chunzhi, Yinhua Ma, Haoran Liu, Lin Tao, Yiqi Ren, Xuelian Chen, He Li e Qihua Yang. "Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage". Chinese Journal of Catalysis 41, n.º 8 (agosto de 2020): 1288–97. http://dx.doi.org/10.1016/s1872-2067(20)63572-0.
Texto completo da fonteWang, Yuehui, Jun Huang, Ye Zhang, Shiwen Zhang, Lili Li e Xuan Pang. "The Design of PAN-Based Janus Membrane with Adjustable Asymmetric Wettability in Wastewater Purification". Materials 17, n.º 2 (14 de janeiro de 2024): 417. http://dx.doi.org/10.3390/ma17020417.
Texto completo da fonteBaburaj, Sruthy, Lakshmy Kannadi Valloli, Jayachandran Parthiban, Dipti Garg e Jayaraman Sivaguru. "Manipulating excited state reactivity and selectivity through hydrogen bonding – from solid state reactivity to Brønsted acid photocatalysis". Chemical Communications 58, n.º 12 (2022): 1871–80. http://dx.doi.org/10.1039/d1cc06128c.
Texto completo da fonteDai, Yujie, Chen Lu, Lin Liang, Naixing Feng e Jingang Wang. "Visible Light Electromagnetic Interaction of PM567 Chiral Dye for Asymmetric Photocatalysis, a First-Principles Investigation". Catalysts 10, n.º 8 (4 de agosto de 2020): 882. http://dx.doi.org/10.3390/catal10080882.
Texto completo da fonteGarcía-Fernández, Pedro D., Juan M. Coto-Cid e Gonzalo de Gonzalo. "Green Oxidative Catalytic Processes for the Preparation of APIs and Precursors". Catalysts 13, n.º 3 (22 de março de 2023): 638. http://dx.doi.org/10.3390/catal13030638.
Texto completo da fonteYang, Weijie, Xiao-Li Wang, Ningning Kong, Chengdong Liu, Peipei Sun, Zhiqiang Wang, Yayun Ding, Haiping Lin, Dongsheng Li e Tao Wu. "Minimized external electric field on asymmetric monolayer maximizes charge separation for photocatalysis". Applied Catalysis B: Environmental 295 (outubro de 2021): 120266. http://dx.doi.org/10.1016/j.apcatb.2021.120266.
Texto completo da fonteGarrido-Castro, Alberto F., M. Carmen Maestro e José Alemán. "Asymmetric induction in photocatalysis – Discovering a new side to light-driven chemistry". Tetrahedron Letters 59, n.º 14 (abril de 2018): 1286–94. http://dx.doi.org/10.1016/j.tetlet.2018.02.040.
Texto completo da fonteZhang, Chenhao, Shuming Chen, Chen‐Xi Ye, Klaus Harms, Lilu Zhang, K. N. Houk e Eric Meggers. "Asymmetric Photocatalysis by Intramolecular Hydrogen‐Atom Transfer in Photoexcited Catalyst–Substrate Complex". Angewandte Chemie International Edition 58, n.º 41 (30 de agosto de 2019): 14462–66. http://dx.doi.org/10.1002/anie.201905647.
Texto completo da fonteZhang, Chenhao, Shuming Chen, Chen‐Xi Ye, Klaus Harms, Lilu Zhang, K. N. Houk e Eric Meggers. "Asymmetric Photocatalysis by Intramolecular Hydrogen‐Atom Transfer in Photoexcited Catalyst–Substrate Complex". Angewandte Chemie 131, n.º 41 (30 de agosto de 2019): 14604–8. http://dx.doi.org/10.1002/ange.201905647.
Texto completo da fonteJiang, Yingyan, Hua Su, Wei Wei, Yongjie Wang, Hong-Yuan Chen e Wei Wang. "Tracking the rotation of single CdS nanorods during photocatalysis with surface plasmon resonance microscopy". Proceedings of the National Academy of Sciences 116, n.º 14 (14 de março de 2019): 6630–34. http://dx.doi.org/10.1073/pnas.1820114116.
Texto completo da fonteXia, Rong, Yang Li, Song You, Chunhua Lu, Wenbin Xu e Yaru Ni. "Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption". Materials 16, n.º 17 (31 de agosto de 2023): 5988. http://dx.doi.org/10.3390/ma16175988.
Texto completo da fonteCheng, Yuan-Zheng, Xiao Zhang e Shu-Li You. "Visible-light-mediated photocatalysis as a new tool for catalytic asymmetric dearomatization (CADA) reactions". Science Bulletin 63, n.º 13 (julho de 2018): 809–11. http://dx.doi.org/10.1016/j.scib.2018.06.006.
Texto completo da fonteHu, Ziying, Qianqian Zhang, Jun Gao, Zhaoyue Liu, Jin Zhai e Lei Jiang. "Photocatalysis-Triggered Ion Rectification in Artificial Nanochannels Based on Chemically Modified Asymmetric TiO2 Nanotubes". Langmuir 29, n.º 15 (2 de abril de 2013): 4806–12. http://dx.doi.org/10.1021/la400624p.
Texto completo da fonteHoffmann, Norbert, Samuel Bertrand, Siniša Marinković e Jens Pesch. "Efficient radical addition of tertiary amines to alkenes using photochemical electron transfer". Pure and Applied Chemistry 78, n.º 12 (1 de janeiro de 2006): 2227–46. http://dx.doi.org/10.1351/pac200678122227.
Texto completo da fonteHua, Ting-Bi, Qing-Qing Yang e You-Quan Zou. "Recent Advances in Enantioselective Photochemical Reactions of Stabilized Diazo Compounds". Molecules 24, n.º 17 (2 de setembro de 2019): 3191. http://dx.doi.org/10.3390/molecules24173191.
Texto completo da fonteUraguchi, Daisuke, Yuto Kimura, Fumito Ueoka e Takashi Ooi. "Urea as a Redox-Active Directing Group under Asymmetric Photocatalysis of Iridium-Chiral Borate Ion Pairs". Journal of the American Chemical Society 142, n.º 46 (5 de novembro de 2020): 19462–67. http://dx.doi.org/10.1021/jacs.0c09468.
Texto completo da fontePoudel, Milan Babu, Changho Yu e Han Joo Kim. "Synthesis of Conducting Bifunctional Polyaniline@Mn-TiO2 Nanocomposites for Supercapacitor Electrode and Visible Light Driven Photocatalysis". Catalysts 10, n.º 5 (14 de maio de 2020): 546. http://dx.doi.org/10.3390/catal10050546.
Texto completo da fonteChen, Xiao-Li, Ying Zhou, Hua-Li Cui, Hua Yang, Yi-Xia Ren, Ji-Jiang Wang e Long Tang. "Two novel d10 metal coordination polymers based on an asymmetric polycarboxylate ligand: Synthesis, crystal structure, photoluminescence and photocatalysis". Journal of Molecular Structure 1175 (janeiro de 2019): 593–600. http://dx.doi.org/10.1016/j.molstruc.2018.08.036.
Texto completo da fonteKuang, Yulong, Kai Wang, Xiangcheng Shi, Xiaoqiang Huang, Eric Meggers e Jie Wu. "Asymmetric Synthesis of 1,4‐Dicarbonyl Compounds from Aldehydes by Hydrogen Atom Transfer Photocatalysis and Chiral Lewis Acid Catalysis". Angewandte Chemie International Edition 58, n.º 47 (18 de novembro de 2019): 16859–63. http://dx.doi.org/10.1002/anie.201910414.
Texto completo da fonteKuang, Yulong, Kai Wang, Xiangcheng Shi, Xiaoqiang Huang, Eric Meggers e Jie Wu. "Asymmetric Synthesis of 1,4‐Dicarbonyl Compounds from Aldehydes by Hydrogen Atom Transfer Photocatalysis and Chiral Lewis Acid Catalysis". Angewandte Chemie 131, n.º 47 (18 de novembro de 2019): 17015–19. http://dx.doi.org/10.1002/ange.201910414.
Texto completo da fonteGuo, Jing, Yan‐Zhong Fan, Yu‐Lin Lu, Shao‐Ping Zheng e Cheng‐Yong Su. "Visible‐Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage‐Confined Nanospace Merging Chirality with Triplet‐State Photosensitization". Angewandte Chemie 132, n.º 22 (20 de março de 2020): 8739–47. http://dx.doi.org/10.1002/ange.201916722.
Texto completo da fonteGuo, Jing, Yan‐Zhong Fan, Yu‐Lin Lu, Shao‐Ping Zheng e Cheng‐Yong Su. "Visible‐Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage‐Confined Nanospace Merging Chirality with Triplet‐State Photosensitization". Angewandte Chemie International Edition 59, n.º 22 (20 de março de 2020): 8661–69. http://dx.doi.org/10.1002/anie.201916722.
Texto completo da fonteKang, Haeun, Dong Il Won e Dong Ha Kim. "Fabrication of Chiral Plasmonic Photocatalyst By Circularly Polarized Light and Enantioselective Hydrogen Generation Activity". ECS Meeting Abstracts MA2023-02, n.º 36 (22 de dezembro de 2023): 3386. http://dx.doi.org/10.1149/ma2023-02363386mtgabs.
Texto completo da fonteZeevi, Gilad, Joanna Dehnel, Adam K. Budniak, Yana Milyutin, Guy Ankonina, Hossam Haick, Efrat Lifshitz e Yuval E. Yaish. "Dynamics of light-induced charge transfer between carbon nanotube and CdSe/CdS core/shell nanocrystals". Nano Futures 6, n.º 1 (20 de janeiro de 2022): 015001. http://dx.doi.org/10.1088/2399-1984/ac3ccc.
Texto completo da fonteZheng, Jian, Wesley B. Swords, Hoimin Jung, Kazimer L. Skubi, Jesse B. Kidd, Gerald J. Meyer, Mu-Hyun Baik e Tehshik P. Yoon. "Enantioselective Intermolecular Excited-State Photoreactions Using a Chiral Ir Triplet Sensitizer: Separating Association from Energy Transfer in Asymmetric Photocatalysis". Journal of the American Chemical Society 141, n.º 34 (22 de julho de 2019): 13625–34. http://dx.doi.org/10.1021/jacs.9b06244.
Texto completo da fonteDing, Xuan, Chun-Lin Dong, Zhi Guan e Yan-Hong He. "Concurrent Asymmetric Reactions Combining Photocatalysis and Enzyme Catalysis: Direct Enantioselective Synthesis of 2,2-Disubstituted Indol-3-ones from 2-Arylindoles". Angewandte Chemie 131, n.º 1 (3 de dezembro de 2018): 124–30. http://dx.doi.org/10.1002/ange.201811085.
Texto completo da fonteDing, Xuan, Chun-Lin Dong, Zhi Guan e Yan-Hong He. "Concurrent Asymmetric Reactions Combining Photocatalysis and Enzyme Catalysis: Direct Enantioselective Synthesis of 2,2-Disubstituted Indol-3-ones from 2-Arylindoles". Angewandte Chemie International Edition 58, n.º 1 (3 de dezembro de 2018): 118–24. http://dx.doi.org/10.1002/anie.201811085.
Texto completo da fonteKonstantinova, Elizaveta, Vladimir Zaitsev, Artem Marikutsa e Alexander Ilin. "Comparative Study: Catalytic Activity and Rhodamine Dye Luminescence at the Surface of TiO2-Based Nanoheterostructures". Symmetry 13, n.º 9 (21 de setembro de 2021): 1758. http://dx.doi.org/10.3390/sym13091758.
Texto completo da fonteDong, Chun-Lin, Xuan Ding, Lan-Qian Huang, Yan-Hong He e Zhi Guan. "Merging Visible Light Photocatalysis and l-/d-Proline Catalysis: Direct Asymmetric Oxidative Dearomatization of 2-Arylindoles To Access C2-Quaternary Indolin-3-ones". Organic Letters 22, n.º 3 (24 de janeiro de 2020): 1076–80. http://dx.doi.org/10.1021/acs.orglett.9b04613.
Texto completo da fonteBarrera, Luisa, Daniel V. Esposito, Shane Ardo e Rohini Bala Chandran. "Revealing the Role of Redox Reaction Selectivity and Mass Transfer in Current–Voltage Predictions for Ensembles of Photocatalysts". ECS Meeting Abstracts MA2024-01, n.º 35 (9 de agosto de 2024): 1993. http://dx.doi.org/10.1149/ma2024-01351993mtgabs.
Texto completo da fonteRen, Hao, Yi-Ming Li, Wen-Jing Li, Qing-Chao Zhai e Lin Cheng. "Lead-halide Perovskites Quantum Dots Embedded in Mesoporous Silica as Heterogeneous Photocatalysts Combined with Organocatalysts for Asymmetric Catalysis". Green Chemistry, 2024. http://dx.doi.org/10.1039/d3gc05059a.
Texto completo da fonteJia, Guangri, Yingchuan Zhang, Jimmy C. Yu e Zhengxiao Guo. "Asymmetric Atomic Dual‐Sites for Photocatalytic CO2 Reduction". Advanced Materials, 23 de julho de 2024. http://dx.doi.org/10.1002/adma.202403153.
Texto completo da fonte