Siga este link para ver outros tipos de publicações sobre o tema: Astronomical instruments.

Artigos de revistas sobre o tema "Astronomical instruments"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Astronomical instruments".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rifai, Elkhayati. "Observational Instruments in the Arab Scientific Heritage Perspective Ismail ibn Heba Allah al-Hamawi | Al Alät Al Rosydiyyah fi At Thurost Al ‘Ilm Al ‘Aroby ‘Indä Ismäil ibn Hebä Allah al-Hämäwi". Mantiqu Tayr: Journal of Arabic Language 1, n.º 2 (31 de julho de 2021): 145–66. http://dx.doi.org/10.25217/mantiqutayr.v1i2.1580.

Texto completo da fonte
Resumo:
The article is an edited and critical study of an unpublished astronomical text entitled "The Astronomical Instrument Known as The Two-Pronged Machine" of a Damascene astronomer from the thirteenth century AD, Ismail ibn Heba Allah al-Hamawi. ancient scientific texts on this instrument are written by al-Kindi then Ibn Abbad and al-Nayrizi. Al-Kindi's text is the only text published from ancient texts, and today we present to researchers in the development of astronomical instruments a new text to contribute to enriching our knowledge of the scientific tradition of astronomical instruments in Islamic civilization.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Gingerich, Owen. "Book Review: Indian Astronomical Instruments: Astronomical Instruments in the Rampur Raza Library". Journal for the History of Astronomy 36, n.º 1 (fevereiro de 2005): 120–21. http://dx.doi.org/10.1177/002182860503600115.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

KING, D. A. "Cataloguing Medieval Islamic Astronomical Instruments". Bibliotheca Orientalis 57, n.º 3 (1 de agosto de 2000): 247–58. http://dx.doi.org/10.2143/bior.57.3.2015769.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Barden, Samuel C. "FIBER OPTICS IN ASTRONOMICAL INSTRUMENTS". Optics and Photonics News 7, n.º 2 (1 de fevereiro de 1996): 34. http://dx.doi.org/10.1364/opn.7.2.000034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Heacox, William D., e Pierre Connes. "Optical fibers in astronomical instruments". Astronomy and Astrophysics Review 3, n.º 3-4 (1992): 169–99. http://dx.doi.org/10.1007/bf00872526.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Naylor, David A., Brad G. Gom, Matthijs H. D. van der Wiel e Gibion Makiwa. "Astronomical imaging Fourier spectroscopy at far-infrared wavelengths". Canadian Journal of Physics 91, n.º 11 (novembro de 2013): 870–78. http://dx.doi.org/10.1139/cjp-2012-0571.

Texto completo da fonte
Resumo:
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Schmidl, Petra G. "Astronomical Instruments in the Ottoman Empire". Journal for the History of Astronomy 51, n.º 4 (novembro de 2020): 497–99. http://dx.doi.org/10.1177/0021828620943749.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

GOLDSTEIN, BERNARD R. "Descriptions of Astronomical Instruments in Hebrew". Annals of the New York Academy of Sciences 500, n.º 1 From Deferent (junho de 1987): 105–41. http://dx.doi.org/10.1111/j.1749-6632.1987.tb37198.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Stewart, J. M., S. M. Beard, B. D. Kelly e M. J. Paterson. "Applications of transputers to astronomical instruments". IEEE Transactions on Nuclear Science 37, n.º 2 (abril de 1990): 529–34. http://dx.doi.org/10.1109/23.106672.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Thibodeau, Sharon Gibbs. "Islamic Astronomical Instruments. David A. King". Isis 81, n.º 1 (março de 1990): 101–2. http://dx.doi.org/10.1086/355272.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Helden, A. V. "HISTORY OF SCIENCE:Cathedrals as Astronomical Instruments". Science 286, n.º 5448 (17 de dezembro de 1999): 2279–80. http://dx.doi.org/10.1126/science.286.5448.2279.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Planesas, Pere. "Reconstructing the astronomical heritage". Proceedings of the International Astronomical Union 5, S260 (janeiro de 2009): 510–13. http://dx.doi.org/10.1017/s1743921311002766.

Texto completo da fonte
Resumo:
AbstractStudies of the astronomical heritage can deal with the ancient astronomical knowledge, traditions and myths, as well as with old instruments and observatories. It is urgent to work for their recovery, before they are definitely forgoten, lost or destroyed. On the cultural side, the Joint ALMA Observatory is sponsoring the study of the local cosmology and sky of the indigenous people living in the region where ALMA is currently being build. In the case of ancient instruments, several success stories already exist, the most recent one being the reconstruction of the Madrid 25ft Herschel telescope. Examples of notable instruments pending reconstruction are listed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Lomb, Nick. "The Instruments from Parramatta Observatory". Historical Records of Australian Science 15, n.º 2 (2004): 211. http://dx.doi.org/10.1071/hr04004.

Texto completo da fonte
Resumo:
Sydney Observatory, Australia's oldest existing observatory, was built in 1858 on what is now called Observatory Hill. With such a long continuous history the Observatory has a good collection of astronomical instruments relating to its own history. Moreover, the collection extends further back to Parramatta Observatory, set up in 1821 by Governor Sir Thomas Brisbane. After the closure of that observatory in 1847 its instruments were retained in the colony and given to the fledgling Sydney Observatory on its establishment.Instruments from Paramatta on display at Sydney Observatory include a brass repeating circle by the eminent Munich instrument makers Reichenbach, Utzschneider and Liebherr, a Troughton transit telescope, an equatorial telescope by Banks and a 1791 celestial globe. There is also an astronomical regulator by Hardy. Brisbane acquired some of these instruments for his previous observatory in Scotland while some were obtained specifically for his Australian observatory. This paper discusses the use of these instruments at Parramatta and their subsequent fate at Sydney Observatory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Razaullah Ansari, S. M., e S. A. Khan Ghori. "Two Treatises on Astronomical Instruments by cABD Al-Munc IM Al-cĀmilī & Qāsim cAlī Al-Qāyinī". International Astronomical Union Colloquium 91 (1987): 215–25. http://dx.doi.org/10.1017/s0252921100106086.

Texto completo da fonte
Resumo:
A characteristic feature of Arab-islamic astronomy during the Middle Ages is the promotion and tremendous growth of practical astronomy which was in turn manifested primarily by the establishment of scores of observatories in West-Central Asia, from Abbasid Caliph al-Māmūn (813-833) to the Turkish king Murād III (1574-1595), and by the production of copious literature on astronomical Tables (the zījes) as well as on astronomical instruments (ālāt al-rasad). The enormity of the literature on the latter could be gauged by the list of extant works as given by Matvievskaya and Rosenfeld (1983) in their recent Biobibliography: 349 treatises on astrolabes, 138 on sine-instruments, 81 on quadrants, 4 on sextants and octants, 41 on armillary spheres and celestial globes, 77 on sundials and again 77 on “other instruments”—in all 767 treatises. As a matter of fact the instruments developed by Arab-islamic astronomers could be broadly classified into four groups: a) Time measuring instruments (e.g. sundials, shadow quadrants), b) Angle measuring instruments for astronomical parameters (e.g. armilla of various kinds, dioptre and parallactic rulers), c) instruments for transformation of system of coordinates and/or solving nomographical problems (e.g. astrolabes, quadrants, dāstūr instrument), d) Mathematical instruments for evaluating trigonometric functions, (e.g. sinequadrants). Apart from the fourth and the most important of all, the astrolabe, which in turn embodies all the four groups of instruments to a certain extent, works on “other instruments” were compiled in almost every century (down from 9th to 18th A.D.), also by well-known Arab-Islamic astronomer-mathematicians.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ekers, R. D. "Review of Linked Array Instruments". Highlights of Astronomy 8 (1989): 551–52. http://dx.doi.org/10.1017/s1539299600008297.

Texto completo da fonte
Resumo:
At cm wavelengths aperture synthesis radio-telescopes (arrays of linked antennas which synthesize an image of the sky with high angular resolution) are now becoming the dominant astronomical research tool. Major new facilities such as the VLA are in full operation, others such as the Australia Telescope are nearing completion and a number of telescopes designed to form images in real time have been converted to operate in the aperture synthesis mode (e.g. MOST, Bologna Cross). See Napier et al. (1983) for a review of modern synthesis telescopes. The high resolution, sensitivity and freedom from confusion have led the aperture synthesis telescopes into very diverse astronomical applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Babovic, Lj. "The bronze-age astronomical finds in the territory of Serbia". Serbian Astronomical Journal, n.º 164 (2001): 27–40. http://dx.doi.org/10.2298/saj0164027b.

Texto completo da fonte
Resumo:
In the present paper it is shown that among the archeological finds at Vatin some 50 km north-east of Belgrade, there are primeval astronomical instruments: gnomon, metron along with the calendar records, belonging to the proto-astronomic age, which by their ornamental analogies are linked with the contemporaneous Mycenae culture (around 1500-1250. B.C).
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Akhmad Nadirin, Akhmad Nadirin, Edy Setyawan, Akhmad Faiz Wiguna e M. Syaoqi Nahwandi. "RANCANG BANGUN RUBU’ MUJAYYAB SEBAGAI INSTRUMEN FALAK KLASIK". ELFALAKY 7, n.º 2 (18 de dezembro de 2023): 195–209. http://dx.doi.org/10.24252/ifk.v7i2.42930.

Texto completo da fonte
Resumo:
Astronomical Instruments or Astronomy is a scientific icon that is clear evidence of the development of Astronomy in classical Western and Islamic civilization. Even though the classical Falak instrument is simple, it holds extraordinary scientific treasures. Rubu' Mujayyab is an instrument used by humans to observe and calculate the positions of celestial bodies before telescopes and logarithm tables were invented. In the current era of technological development, Classical Falak Instruments such as the Rubu' Mujayyab need to be developed and adapted to technological advances into software or digital applications in order to continue to exist. This research aims to design the Javascript-based Rubu' Mujayyab application and determine the results of functionality testing and evaluation of the Javascript-based Rubu' Mujayyab digital application. This research was conducted using the Research and Development method. In this research, the classical astronomical instrument was digitally developed using the JavaScript programming language. The Falak instrument developed is Rubu' Mujayyab. This instrument is a classic astronomical instrument which is still relevant to current conditions and is widely used in studying astronomy in Madrasas, Islamic boarding schools and Islamic universities. After the digital application of the classic astronomical instrument was created, it was then validated with an instrument validation sheet by an Expert Researcher from Imah Noong, Lembang, namely Hendro Setyanto, as well as testing the functionality of the two applications. The result is a classic digital falak application, namely rubu' al-mujayyab itself. Apart from that, based on the results of functionality tests by Expert Researchers, it was found that this digital application can run and function well according to the function of the physical instrument.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Chinnici, Ileana, e Donatella Randazzo. "A Manuscript by Jesse Ramsden at Palermo Observatory". Nuncius 26, n.º 1 (2011): 243–64. http://dx.doi.org/10.1163/182539111x569847.

Texto completo da fonte
Resumo:
AbstractAn interesting manuscript, unsigned and undated, containing two incomplete texts, has been found in the Palermo Astronomical Observatory Library. The handwriting has been recognized as belonging to Jesse Ramsden, the famous London instrument maker and the texts deals with some little-known improvements made by him around 1787-88 on the adjustments of astronomical quadrants and transit instruments. The provenance of the manuscript is unclear, owing to the absence of any related documentary evidence.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Botez, Elvira, e Tiberiu Oproiu. "About Some Astronomical Instruments from Batthyanian Observatory in Alba Iulia". Highlights of Astronomy 12 (2002): 361–64. http://dx.doi.org/10.1017/s1539299600013757.

Texto completo da fonte
Resumo:
AbstractBuilt toward the end of the 18th century on the last floor of a former Trinitarian church, the Astronomical Observatory in Alba Iulia (Romania) was equipped with instruments brought from Vienna and it was in activity until 1860. A description of the astronomical instruments of those existing at present is given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Bohlin, Ralph C. "Standard Astronomical Sources for the Space Telescope". Symposium - International Astronomical Union 111 (1985): 357–60. http://dx.doi.org/10.1017/s0074180900078955.

Texto completo da fonte
Resumo:
The Space Telescope (ST) will require many types of standard sources for a diverse range of calibrations to be performed after launch. The scientific instruments are sensitive to a wide range of wavelengths from 1050 to 11,000Å and encompass a broad range of measurement capabilities including astrometry, photometry, imaging, polarimetry, and spectroscopy. To verify proper operations of each instrument and to provide quantitative calibrations, a diverse range of standard sources and fields are required. In order to select targets that satisfy the requirements of the Instrument Definition Teams and the long term responsibilities of the Science Institute, six groups containing a total of 25 astronomers are defining the calibration targets to be observed after launch. The six categories of ST standard sources are: 1)Ultraviolet Spectrophotometric2)Ground Based Spectrophotometric and Photometric3)Wavelength4)Astrometric5)Polarimetric6)Spatially Flat FieldThe data in these categories will be collected from the literature or through new observing programs as appropriate. These six reports of the working groups outline the calibrations and proposed targets for all of the scientific instruments on ST. The collected data on each set of standard sources should be published in the refereed literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ren, Deqing. "Apochromatic lenses for near-infrared astronomical instruments". Optical Engineering 38, n.º 3 (1 de março de 1999): 537. http://dx.doi.org/10.1117/1.602131.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Bland-Hawthorn, Joss, e Pierre Kern. "Astrophotonics: a new era for astronomical instruments". Optics Express 17, n.º 3 (30 de janeiro de 2009): 1880. http://dx.doi.org/10.1364/oe.17.001880.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Hastings, P. R., e D. M. Montgomery. "Support of cooled components in astronomical instruments". Cryogenics 33, n.º 11 (novembro de 1993): 1032–36. http://dx.doi.org/10.1016/0011-2275(93)90205-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Christianson, J. R. "Tycho’s Communities: Astronomical Letters, Books and Instruments". Metascience 17, n.º 1 (22 de janeiro de 2008): 131–35. http://dx.doi.org/10.1007/s11016-007-9172-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Christianson, J. R. "Tycho’s Communities: Astronomical Letters, Books and Instruments". Metascience 17, n.º 2 (7 de maio de 2008): 301–5. http://dx.doi.org/10.1007/s11016-008-9197-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ramasubramanian, K. "Book Review: Early Indian Astronomical Instruments: The Archaic and the Exotic: Studies in the History of Indian Astronomical Instruments". Journal for the History of Astronomy 41, n.º 1 (fevereiro de 2010): 126–27. http://dx.doi.org/10.1177/002182861004100110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Ackermann, Silke, e Louise Devoy. "Humfrey Cole Revisited". Nuncius 36, n.º 1 (1 de abril de 2021): 67–94. http://dx.doi.org/10.1163/18253911-bja10008.

Texto completo da fonte
Resumo:
Abstract England’s first native scientific instrument maker, Humfrey Cole (c. 1530–1591), is well-known to historians thanks to a collection of twenty-six instruments and a map of Palestine that survive today in public and private ownership. Two recently studied instruments have enhanced our knowledge of Cole’s work: i) an horary quadrant, signed and dated 1573, now in the collections of the British Museum, and ii) an astronomical compendium, signed and dated 1590, held in a private collection. The unusual design of the horary quadrant demonstrates Cole’s versatile approach in adapting his products for specific customers, while certain features on the astronomical compendium, possibly the last piece ever made by Cole, suggest that he was aware of his final days and passed on his work to a younger maker, James Kynvyn (c. 1550–1615), hinting at a possible collaborative working relationship between these two generations of instrument makers in Elizabethan London.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Ohashi, Yukio. "A Note on Some Sanskrit Manuscripts on Astronomical Instruments". International Astronomical Union Colloquium 91 (1987): 191–95. http://dx.doi.org/10.1017/s0252921100106037.

Texto completo da fonte
Resumo:
The earliest astronomical instruments in India are the śaṙku (gnomon) and the ghaṭikā (clepsydra). The former is mentioned in the Śulbasūtras, and the latter in the Vedāṅqajyotiṣa. Aryabhaṭa described a rotating model of the celestial sphere. After Aryabhaṭa, several instruments were described by Varāhamihira, Brahmagupta,Lalla, Śrīpati , and Bhāskara II. After Bhāskara II , some Sanskrit texts specialized on astronomical instruments were composed. The earliest text of this kind is the Yantra-rāja (AD 1370) written by Mahendra Sūri. It is also the first text on the astrolabe in Sanskrit. After Mahendra Sūri, Padmanābha, Cakradhara, Ganeśa-Daivajña etc. composed Sanskrit texts on instruments, but most of them remain unpublished.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Li, Shu-yue. "Innovative Application of the Artistic Modeling of Ancient Chinese Astronomical Instruments in Modern Design: A Case Study of the Armillary Sphere". International Journal of Arts and Humanities Studies 4, n.º 1 (5 de janeiro de 2024): 01–08. http://dx.doi.org/10.32996/ijahs.2024.4.1.1.

Texto completo da fonte
Resumo:
Ancient Chinese astronomical instruments, exemplifying classical Chinese traditional artefact design, represent a perfect amalgamation of ancient China's advanced scientific and technological prowess with the aesthetic philosophy underlying traditional Chinese artefact creation. Their scientific and artistic values are considerable and should not be underestimated. This research introduces these instruments' concepts, design characteristics, and innovative application cases, mainly focusing on the armillary sphere from an artistic design perspective. This research employs a mixed-methods approach, including surveys, literature reviews, and systematic analysis; the research examines the instruments' design features and cultural significance. The objective of the study is to highlight the armillary sphere's potential as a source of inspiration across various modern design domains, such as sculpture and installation, fashion accessory design and stage performance. The study concludes that reinterpreting these ancient astronomical instruments in modern design not only preserves cultural heritage but also encourages cross-border innovation. This fusion approach offers new perspectives for designers, blending traditional Chinese culture with contemporary design practice. Future research is suggested to explore the integration and wider application of ancient Chinese astronomical instruments in modern design.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Ellis, S. C., J. Bland-Hawthorn e S. G. Leon-Saval. "General coupling efficiency for fiber-fed astronomical instruments". Journal of the Optical Society of America B 38, n.º 7 (17 de junho de 2021): A64. http://dx.doi.org/10.1364/josab.423905.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Ashley, Michael C. B., Paul W. Brooks e James P. Lloyd. "Remote Control of Astronomical Instruments via the Internet". Publications of the Astronomical Society of Australia 13, n.º 1 (janeiro de 1996): 17–21. http://dx.doi.org/10.1017/s1323358000020440.

Texto completo da fonte
Resumo:
A software package called ERIC is described that provides a framework for allowing scientific instruments to be remotely controlled via the Internet. The package has been used to control four diverse astronomical instruments, and is now being made freely available to the community. For a description of ERIC’s capabilities, and how to obtain a copy, see the conclusion to this paper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Slanger, T. G., P. C. Cosby, D. L. Huestis e B. D. Sharpee. "Review of tropical nightglow studies with astronomical instruments". Journal of Atmospheric and Solar-Terrestrial Physics 68, n.º 13 (setembro de 2006): 1426–40. http://dx.doi.org/10.1016/j.jastp.2005.04.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Moon Kyu Yi. "The Transmission of Astronomical Instruments in East Asia". Journal of North-east Asian Cultures 1, n.º 47 (junho de 2016): 77–94. http://dx.doi.org/10.17949/jneac.1.47.201606.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

CHINNICI, ILEANA. "19TH CENTURY SPECTROSCOPIC INSTRUMENTS IN ITALIAN ASTRONOMICAL OBSERVATORIES". Nuncius 15, n.º 2 (2000): 671–79. http://dx.doi.org/10.1163/182539100x00092.

Texto completo da fonte
Resumo:
Abstracttitle RIASSUNTO /title Questo paper esamina l'attivit di ricerca condotta in Italia nella seconda met del XIX secolo nel campo della nascente astrofisica, soffermandosi sugli strumenti allora utilizzati dai principali esponenti di questa disciplina e sui costruttori italiani di strumenti spettroscopici. Si tenta quindi di dare una spiegazione della debolezza dell'industria italiana in questo settore che si inquadra nella crisi generale del settore degli strumenti scientifici nel XIX secolo in Italia.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Chen, Yang, Xiao-Li Meng, Xufei Wang, David A. van Dyk, Herman L. Marshall e Vinay L. Kashyap. "Calibration Concordance for Astronomical Instruments via Multiplicative Shrinkage". Journal of the American Statistical Association 114, n.º 527 (18 de março de 2019): 1018–37. http://dx.doi.org/10.1080/01621459.2018.1528978.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

CHINNICI, ILEANA. "19TH CENTURY SPECTROSCOPIC INSTRUMENTS IN ITALIAN ASTRONOMICAL OBSERVATORIES". Nuncius 15, n.º 2 (1 de janeiro de 2000): 671–79. http://dx.doi.org/10.1163/221058700x00096.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Yunfen, Zhou. "Library and Information Services in Chinese Astronomy". International Astronomical Union Colloquium 110 (1989): 219–21. http://dx.doi.org/10.1017/s025292110000347x.

Texto completo da fonte
Resumo:
The development of the library science marks the progresses of science and culture in a country or a district. The study courses and results of a research institute are strongly reflected by its library and information work. The development of the astronomical research, the collection of astronomical observations, and the manufacture of astronomical instruments and equipments, etc., are all being made progress by library and information services to consult scientific foundation, to seek method, and to derive needed nourishment. The astronomical library and information service system is growing and expanding with continuously providing information to the astronomical study. In this paper I shall give some introductions about the Libraries and Information Divisions of astronomical observatories in our country.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

HAHN, I., P. DAY, B. BUMBLE e H. G. LEDUC. "ADVANCED HYBRID SQUID MULTIPLEXER CONCEPT FOR THE NEXT GENERATION OF ASTRONOMICAL INSTRUMENTS". International Journal of Modern Physics D 16, n.º 12b (dezembro de 2007): 2407–12. http://dx.doi.org/10.1142/s0218271807011413.

Texto completo da fonte
Resumo:
The Superconducting Quantum Interference Device (SQUID) has been used and proposed often to read out low-temperature detectors for astronomical instruments. A multiplexed SQUID readout for currently envisioned astronomical detector arrays, which will have tens of thousands of pixels, is still challenging with the present technology. We present a new, advanced multiplexing concept and its prototype development that will allow for the readout of 1,000–10,000 detectors with only three pairs of wires and a single microwave coaxial cable.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Pettersen, Bjørn Ragnvald. "A leading nineteenth century instrument-maker in Norway and his astronomical and geodetic instruments". Journal of Astronomical History and Heritage 07, n.º 02 (1 de dezembro de 2004): 95–102. http://dx.doi.org/10.3724/sp.j.1440-2807.2004.02.05.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Khanzadyan, M. A., e A. V. Mazurkevich. "Development of a method for measuring the astronomical azimuth using an electronic total station". E3S Web of Conferences 310 (2021): 03007. http://dx.doi.org/10.1051/e3sconf/202131003007.

Texto completo da fonte
Resumo:
In this article, the method of measuring the astronomical azimuth using an electronic total station, which is not intended for performing astronomical work, is considered. A method of measuring the astronomical azimuth using a high-precision electronic total station has been developed. Studies have been carried out to establish the influence of the components of errors in measurements of astronomical azimuth, forming the total budget of the error of the developed methodology, which has been tested on the reference stationary complex of metrological support of azimuth measuring instruments (СMS AMI).
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Dinkelaker, Aline N., e Aashia Rahman. "Astrophotonics: Processing starlight". Europhysics News 52, n.º 1 (2021): 22–24. http://dx.doi.org/10.1051/epn/2021104.

Texto completo da fonte
Resumo:
The field of astrophotonics has been fostering photonic innovations critical and unique to astronomical applications for several years. As we are about to embark on the new era of extremely large telescopes, astrophotonics is poised to become an integral part of the next generation astronomical instruments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Gaida, Margaret. "Reading Cosmographia: Peter Apian’s Book-Instrument Hybrid and the Rise of the Mathematical Amateur in the Sixteenth Century". Early Science and Medicine 21, n.º 4 (15 de novembro de 2016): 277–302. http://dx.doi.org/10.1163/15733823-00214p01.

Texto completo da fonte
Resumo:
The incorporation of paper instruments, also known as volvelles, into astronomical and cosmographical texts is a well-known facet of sixteenth-century printing. However, the impact that these instruments had on the reading public has yet to be determined. This paper argues that the inclusion of paper instruments in Peter Apian’s Cosmographia transforms the text into a book-instrument hybrid. The instruments and accompanying text in Cosmographia enabled readers to make their own measurements and calculations of both the heavens and the earth. Through the experience of manipulating the instruments, the readers became participants in sixteenth century mathematical culture, and thus mathematical amateurs. I conclude that the presence of these mathematical amateurs contributed to a much broader social base for the cultural shift towards an empirical understanding of nature from 1500 to 1700.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Calvo, Emilia. "Some Features of the Old Castilian Alfonsine Translation of ʿAlī Ibn Khalaf’s Treatise on the Lámina Universal". Medieval Encounters 23, n.º 1-5 (22 de setembro de 2017): 106–23. http://dx.doi.org/10.1163/15700674-12342244.

Texto completo da fonte
Resumo:
Abstract The aim of the paper is to present some features of the treatise on the lámina universal, an astronomical instrument devised by ʿAlī ibn Khalaf, an eleventh-century Andalusi mathematician and astronomer who belonged to the scientific circle of Ṣāʿid al- Andalusī. ʿAlī ibn Khalaf was a contemporary of Ibn al-Zarqālluh (al-Zarqālī, Azarquiel), also a mathematician and astronomer working under Ṣāʿid’s patronage, and the inven- tor of the instrument known as azafea. Both instruments, the lámina universal and the azafea, are universal instruments devised to overcome the limitations of the standard astrolabe. The only text describing ʿAlī ibn Khalaf’s instrument is the thirteenth- century old-Castilian Alfonsine translation, which has not been studied in detail up to now, although some preliminary studies have been published. The present study deals with some linguistic and technical difficulties of the text. In many passages, it seems to follow literally the grammatical structure of the Arabic language while in others, the lack of technical terms forced the translators to resort either to a literal transcription of the original Arabic terminology or, in some cases, to approximate translations that make the text somewhat difficult to follow. The paper provides additional information related mainly to the astronomical parameters and the technical vocabulary used in the translation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Paltsev, N. G., e S. Ya Kolesnik. "Investigation of the coordinate system of irreversible astronomical instruments". Kinematics and Physics of Celestial Bodies 24, n.º 4 (agosto de 2008): 223–28. http://dx.doi.org/10.3103/s0884591308040065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Packham, C., M. Escuti, J. Ginn, C. Oh, I. Quijano e G. Boreman. "Polarization Gratings: A Novel Polarimetric Component for Astronomical Instruments". Publications of the Astronomical Society of the Pacific 122, n.º 898 (dezembro de 2010): 1471–82. http://dx.doi.org/10.1086/657904.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Clampin, Mark. "Welcome to theJournal of Astronomical Telescopes, Instruments, and Systems". Journal of Astronomical Telescopes, Instruments, and Systems 1, n.º 1 (28 de outubro de 2014): 010101. http://dx.doi.org/10.1117/1.jatis.1.1.010101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Pisano, Giampaolo, Peter Hargrave, Matthew Griffin, Patrick Collins, Jeffrey Beeman e Raul Hermoso. "Thermal illuminators for far-infrared and submillimeter astronomical instruments". Applied Optics 44, n.º 16 (1 de junho de 2005): 3208. http://dx.doi.org/10.1364/ao.44.003208.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Raposo, Pedro M. P. "The Elephant and the Sky: Ivory in Astronomical Instruments". Curator: The Museum Journal 61, n.º 1 (janeiro de 2018): 187–95. http://dx.doi.org/10.1111/cura.12240.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Labadie, Lucas, e Oswald Wallner. "Mid-infrared guided optics: a perspective for astronomical instruments". Optics Express 17, n.º 3 (30 de janeiro de 2009): 1947. http://dx.doi.org/10.1364/oe.17.001947.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Stevenson, T., e N. Lomb. "Australian sites of astronomical heritage". Proceedings of the International Astronomical Union 10, H16 (agosto de 2012): 659–60. http://dx.doi.org/10.1017/s1743921314012794.

Texto completo da fonte
Resumo:
AbstractThe heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia