Artigos de revistas sobre o tema "Asphalt solar collector"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Asphalt solar collector".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wu, Shao Peng, Bo Li, Hong Wang e Jian Qiu. "Numerical Simulation of Temperature Distribution in Conductive Asphalt Solar Collector due to Pavement Material Parameters". Materials Science Forum 575-578 (abril de 2008): 1314–19. http://dx.doi.org/10.4028/www.scientific.net/msf.575-578.1314.
Texto completo da fonteBasheer Sheeba, Jinshah, e Ajith Krishnan Rohini. "Structural and Thermal Analysis of Asphalt Solar Collector Using Finite Element Method". Journal of Energy 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/602087.
Texto completo da fonteBeddu, Salmia, Mushtaq Ahmad, Nur Liyana Mohd Kamal, Daud Mohamad, Zarina Itam, Yee Hooi Min e Warid Wazien Ahmad Zailani. "A State-of-the-Art Review of Hydronic Asphalt Solar Collector Technology for Solar Energy Harvesting on Road Pavement". MATEC Web of Conferences 400 (2024): 03007. http://dx.doi.org/10.1051/matecconf/202440003007.
Texto completo da fonteChen, Ming Yu, Shao Peng Wu, Ji Zhe Zhang e Pan Pan. "Design and Performance of an Asphalt Pavement Snow Melting System". Key Engineering Materials 467-469 (fevereiro de 2011): 1550–55. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.1550.
Texto completo da fonteAbbaa, Firas A., e Mohammed H. Alhamdo. "Thermal Performance Enhancement of Asphalt Solar Collector by Using Extended Surfaces". Progress in Solar Energy and Engineering Systems 5, n.º 1 (31 de dezembro de 2021): 17–25. http://dx.doi.org/10.18280/psees.050104.
Texto completo da fonteWu, Di, Gangqiang Kong, Hanlong Liu, Xi Zhu e Hefu Pu. "Performance of a bridge deck as solar collector in a thermal energy storage system". E3S Web of Conferences 205 (2020): 07009. http://dx.doi.org/10.1051/e3sconf/202020507009.
Texto completo da fontePasetto, Marco, Andrea Baliello, Giovanni Giacomello e Emiliano Pasquini. "Mechanical Feasibility of Asphalt Materials for Pavement Solar Collectors: Small-Scale Laboratory Characterization". Applied Sciences 13, n.º 1 (27 de dezembro de 2022): 358. http://dx.doi.org/10.3390/app13010358.
Texto completo da fonteAbbas, Firas A., e Mohammed H. Alhamdo. "Experimental and numerical analysis of an asphalt solar collector with a conductive asphalt mixture". Energy Reports 11 (junho de 2024): 327–41. http://dx.doi.org/10.1016/j.egyr.2023.11.065.
Texto completo da fontePasetto, Marco, Andrea Baliello, Giovanni Giacomello e Emiliano Pasquini. "Rutting Behavior of Asphalt Surface Layers Designed for Solar Harvesting Systems". Materials 16, n.º 1 (28 de dezembro de 2022): 277. http://dx.doi.org/10.3390/ma16010277.
Texto completo da fonteTang, N., S. P. Wu, M. Y. Chen, P. Pan e C. J. Sun. "Effect mechanism of mixing on improving conductivity of asphalt solar collector". International Journal of Heat and Mass Transfer 75 (agosto de 2014): 650–55. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.04.014.
Texto completo da fonteAlonso-Estébanez, Alejandro, Pablo Pascual-Muñoz, José Luis Sampedro-García e Daniel Castro-Fresno. "3D numerical modelling and experimental validation of an asphalt solar collector". Applied Thermal Engineering 126 (novembro de 2017): 678–88. http://dx.doi.org/10.1016/j.applthermaleng.2017.07.127.
Texto completo da fonteÇuhac, Caner, Anne Mäkiranta, Petri Välisuo, Erkki Hiltunen e Mohammed Elmusrati. "Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region". Energies 13, n.º 4 (21 de fevereiro de 2020): 979. http://dx.doi.org/10.3390/en13040979.
Texto completo da fonteChen, Mingyu, Shaopeng Wu, Hong Wang e Jizhe Zhang. "Study of ice and snow melting process on conductive asphalt solar collector". Solar Energy Materials and Solar Cells 95, n.º 12 (dezembro de 2011): 3241–50. http://dx.doi.org/10.1016/j.solmat.2011.07.013.
Texto completo da fonteAbbas, Firas A., e Mohammed H. Alhamdo. "Numerical modeling and experimental validation of an asphalt solar collector using fins". Solar Energy 273 (maio de 2024): 112529. http://dx.doi.org/10.1016/j.solener.2024.112529.
Texto completo da fontePan, Pan, Chang Jun Sun, Ning Tang, Ming Yu Chen e Shao Peng Wu. "Study on Volume Performance of Conductive Asphalt Concrete Based on Freeze-Thaw Cycle". Applied Mechanics and Materials 303-306 (fevereiro de 2013): 2501–4. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.2501.
Texto completo da fonteSaad, H. E., K. S. Kaddah, A. A. Sliem, A. Rafat e M. A. Hewhy. "The effect of the environmental parameters on the performance of asphalt solar collector". Ain Shams Engineering Journal 10, n.º 4 (dezembro de 2019): 791–800. http://dx.doi.org/10.1016/j.asej.2019.04.005.
Texto completo da fonteMasoumi, Amir Pouya, Erfan Tajalli-Ardekani e Ali Akbar Golneshan. "Investigation on performance of an asphalt solar collector: CFD analysis, experimental validation and neural network modeling". Solar Energy 207 (setembro de 2020): 703–19. http://dx.doi.org/10.1016/j.solener.2020.06.045.
Texto completo da fonteLi, B., S. P. Wu, Y. Xiao e P. Pan. "Investigation of heat-collecting properties of asphalt pavement as solar collector by a three-dimensional unsteady model". Materials Research Innovations 19, sup1 (abril de 2015): S1–172—S1–176. http://dx.doi.org/10.1179/1432891715z.0000000001398.
Texto completo da fonteShaopeng, Wu, Chen Mingyu e Zhang Jizhe. "Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs". Applied Thermal Engineering 31, n.º 10 (julho de 2011): 1582–87. http://dx.doi.org/10.1016/j.applthermaleng.2011.01.028.
Texto completo da fonteTahami, Seyed Amid, Mohammadreza Gholikhani, Reza Nasouri e Samer Dessouky. "Evaluation of a Novel Road Thermoelectric Generator System". MATEC Web of Conferences 271 (2019): 08002. http://dx.doi.org/10.1051/matecconf/201927108002.
Texto completo da fonteConcha, Jose L., e Jose Norambuena-Contreras. "Thermophysical properties and heating performance of self-healing asphalt mixture with fibres and its application as a solar collector". Applied Thermal Engineering 178 (setembro de 2020): 115632. http://dx.doi.org/10.1016/j.applthermaleng.2020.115632.
Texto completo da fonteNajeeb, Muhammad Imran, Zarina Itam, Mohammed Azeez Alrubaye, Shaikh Muhammad Mubin Shaik Ahmad Fadzil, Nazirul Mubin Zahari, Mohd Supian Abu Bakar, Agusril Syamsir, Mohd Hafiz Zawawi e Norizham Abdul Razak. "Numerical Studies on the Impact of Traffic Loading on Embedded Pipes in Solar Energy Harvesting Concrete Pavement". Applied Sciences 13, n.º 11 (31 de maio de 2023): 6685. http://dx.doi.org/10.3390/app13116685.
Texto completo da fonteK.Sh., Kaddah,, Hewhy, M. A., Selim, A., Saad, H. e Ramadan, A. M. "STUDY THE EFFECT OF THE ENVIRONMENTAL PARAMETERS ON THE PERFORMANCE OF A PROTOTYPE FOR ASPHALT SOLAR COLLECTOR USING AIR AS A WORKING FLUID". Journal of Environmental Science 36, n.º 2 (1 de dezembro de 2016): 41–63. http://dx.doi.org/10.21608/jes.2016.27661.
Texto completo da fonteBeddu, Salmia, Siti Hidayah Abdul Talib e Zarina Itam. "The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia". IOP Conference Series: Earth and Environmental Science 32 (março de 2016): 012045. http://dx.doi.org/10.1088/1755-1315/32/1/012045.
Texto completo da fonteBobes-Jesus, Vanesa, Pablo Pascual-Muñoz, Daniel Castro-Fresno e Jorge Rodriguez-Hernandez. "Asphalt solar collectors: A literature review". Applied Energy 102 (fevereiro de 2013): 962–70. http://dx.doi.org/10.1016/j.apenergy.2012.08.050.
Texto completo da fonteWu, S. P., B. Li, P. Pan e F. Guo. "Simulation study of heat energy potential of asphalt solar collectors". Materials Research Innovations 18, sup2 (maio de 2014): S2–436—S2–439. http://dx.doi.org/10.1179/1432891714z.000000000456.
Texto completo da fonteDakessian, Lala, Hagop Harfoushian, David Habib, Ghassan R. Chehab, George Saad e Issam Srour. "Finite Element Approach to Assess the Benefits of Asphalt Solar Collectors". Transportation Research Record: Journal of the Transportation Research Board 2575, n.º 1 (janeiro de 2016): 79–91. http://dx.doi.org/10.3141/2575-09.
Texto completo da fonteJiang, Lei, Shengyue Wang, Xingyu Gu, Norbu Dorjee e Wu Bo. "Inducing directional heat transfer by enhancing directional thermal conductivity of asphalt mixtures for improving asphalt solar collectors". Construction and Building Materials 267 (janeiro de 2021): 121731. http://dx.doi.org/10.1016/j.conbuildmat.2020.121731.
Texto completo da fontePascual-Muñoz, P., D. Castro-Fresno, P. Serrano-Bravo e A. Alonso-Estébanez. "Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors". Applied Energy 111 (novembro de 2013): 324–32. http://dx.doi.org/10.1016/j.apenergy.2013.05.013.
Texto completo da fonteHossain, Md Fahim Tanvir, Samer Dessouky, Ayetullah B. Biten, Arturo Montoya e Daniel Fernandez. "Harvesting Solar Energy from Asphalt Pavement". Sustainability 13, n.º 22 (19 de novembro de 2021): 12807. http://dx.doi.org/10.3390/su132212807.
Texto completo da fonteLi, Zuzhong, Yayun Zhang, Chunguang Fa, Xiaoming Zou, Haiwei Xie, Huaxin Chen e Rui He. "Investigation on the Temperature Distribution of Asphalt Overlay on the Existing Cement Concrete Pavement in Hot-Humid Climate in Southern China". Advances in Civil Engineering 2021 (9 de fevereiro de 2021): 1–12. http://dx.doi.org/10.1155/2021/2984650.
Texto completo da fonteZhang, Naiji, Guoxiong Wu, Bin Chen e Cong Cao. "Numerical Model for Calculating the Unstable State Temperature in Asphalt Pavement Structure". Coatings 9, n.º 4 (22 de abril de 2019): 271. http://dx.doi.org/10.3390/coatings9040271.
Texto completo da fonteHassan, H. F., A. S. Al-Nuaimi, R. Taha e T. M. A. Jafar. "Development of Asphalt Pavement Temperature Models for Oman". Journal of Engineering Research [TJER] 2, n.º 1 (1 de dezembro de 2005): 32. http://dx.doi.org/10.24200/tjer.vol2iss1pp32-42.
Texto completo da fonteWang, Haoyang, Yu Zhu, Weiguang Zhang, Shihui Shen, Shenghua Wu, Louay N. Mohammad e Xuhui She. "Effects of Field Aging on Material Properties and Rutting Performance of Asphalt Pavement". Materials 16, n.º 1 (26 de dezembro de 2022): 225. http://dx.doi.org/10.3390/ma16010225.
Texto completo da fonteSalem, Hassan Awadat, Djordje Uzelac, Zagorka Lozanov Crvenkovic e Bojan Matic. "Development of a Model to Predict Pavement Temperature for Brak Region in Libya". Applied Mechanics and Materials 638-640 (setembro de 2014): 1139–48. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1139.
Texto completo da fonteSalem, Hassan Awadat, Djordje Uzelac e Zagorka Lozanov Crvenkovic. "Development of a Model to Predict Pavement Temperature for Ghat Region in Libya". Applied Mechanics and Materials 587-589 (julho de 2014): 1115–24. http://dx.doi.org/10.4028/www.scientific.net/amm.587-589.1115.
Texto completo da fonteAdwan, Ibrahim, Abdalrhman Milad, Zubair Ahmed Memon, Iswandaru Widyatmoko, Nuryazmin Ahmat Zanuri, Naeem Aziz Memon e Nur Izzi Md Yusoff. "Asphalt Pavement Temperature Prediction Models: A Review". Applied Sciences 11, n.º 9 (22 de abril de 2021): 3794. http://dx.doi.org/10.3390/app11093794.
Texto completo da fonteChiarelli, A., A. Al-Mohammedawi, A. R. Dawson e A. García. "Construction and configuration of convection-powered asphalt solar collectors for the reduction of urban temperatures". International Journal of Thermal Sciences 112 (fevereiro de 2017): 242–51. http://dx.doi.org/10.1016/j.ijthermalsci.2016.10.012.
Texto completo da fonteVizzari, Domenico, Eric Gennesseaux, Stéphane Lavaud, Stéphane Bouron e Emmanuel Chailleux. "Pavement energy harvesting technologies: a critical review". RILEM Technical Letters 6 (20 de agosto de 2021): 93–104. http://dx.doi.org/10.21809/rilemtechlett.2021.131.
Texto completo da fonteTahami, Seyed Amid, Mohammadreza Gholikhani e Samer Dessouky. "Thermoelectric Energy Harvesting System for Roadway Sustainability". Transportation Research Record: Journal of the Transportation Research Board 2674, n.º 2 (fevereiro de 2020): 135–45. http://dx.doi.org/10.1177/0361198120905575.
Texto completo da fonteFarzan, Hadi, Ehsan Hassan Zaim e Mehran Ameri. "Study on effect of glazing on performance and heat dynamics of asphalt solar collectors: An experimental study". Solar Energy 202 (maio de 2020): 429–37. http://dx.doi.org/10.1016/j.solener.2020.04.003.
Texto completo da fontePugsley, Adrian, Aggelos Zacharopoulos, Mervyn Smyth e Jayanta Mondol. "Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration". Renewable Energy 137 (julho de 2019): 2–9. http://dx.doi.org/10.1016/j.renene.2017.10.082.
Texto completo da fontePetralli, Martina, Luciano Massetti, David Pearlmutter, Giada Brandani, Alessandro Messeri e Simone Orlandini. "UTCI field measurements in an urban park in Florence (Italy)". Miscellanea Geographica 24, n.º 3 (31 de julho de 2020): 111–17. http://dx.doi.org/10.2478/mgrsd-2020-0017.
Texto completo da fonteChestovich, Paul J., Richard Z. Saroukhanoff, Syed F. Saquib, Joseph T. Carroll, Carmen E. Flores e Samir F. Moujaes. "598 Temperature profiles of sunlight-exposed surfaces in a desert climate: Determining the risks for pavement burns." Journal of Burn Care & Research 42, Supplement_1 (1 de abril de 2021): S150—S151. http://dx.doi.org/10.1093/jbcr/irab032.248.
Texto completo da fonteNadiri, Ataallah, Marwa M. Hassan e Somayeh Asadi. "Supervised Intelligence Committee Machine to Evaluate Field Performance of Photocatalytic Asphalt Pavement for Ambient Air Purification". Transportation Research Record: Journal of the Transportation Research Board 2528, n.º 1 (janeiro de 2015): 96–105. http://dx.doi.org/10.3141/2528-11.
Texto completo da fonteStengrim, Matthew, Nicole Obando, Hannah Blackburn, Andrea Vecchiotti, Diego Turo, Joseph Vignola, Jeff Foeller e Teresa J. Ryan. "Air temperature profiling over different littoral surfaces". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de março de 2023): A328. http://dx.doi.org/10.1121/10.0019027.
Texto completo da fonteSánchez-Pérez, Juan Francisco, Gloria Motos-Cascales, Manuel Conesa, Francisco Moral-Moreno, Enrique Castro e Gonzalo García-Ros. "Design of a Thermal Measurement System with Vandal Protection Used for the Characterization of New Asphalt Pavements through Discriminated Dimensionless Analysis". Mathematics 10, n.º 11 (3 de junho de 2022): 1924. http://dx.doi.org/10.3390/math10111924.
Texto completo da fonteVyrlas, Panagiotis, Miltiadis Koutras e Vasileios Liakos. "Surface Temperature Experienced and Irrigation Effects on Artificial Turf". WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT 20 (22 de maio de 2024): 194–202. http://dx.doi.org/10.37394/232015.2024.20.20.
Texto completo da fonteJameel Zaidan, Maitham, e Mohammed H. Alhamdo. "THE THERMAL CONDUCTIVITY ENHANCEMENT OF ASPHALT SOLAR COLLECTOR: LITERATURE REVIEW". Journal of Engineering and Sustainable Development, 1 de julho de 2023, 207–27. http://dx.doi.org/10.31272/conf.6.3.19.
Texto completo da fonteGhalandari, Taher, Alalea Kia, David MG Taborda e Cedric Vuye. "Thermal and structural response of a pavement solar collector prototype". Symposium on Energy Geotechnics 2023, 28 de setembro de 2023. http://dx.doi.org/10.59490/seg.2023.511.
Texto completo da fonte